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I; Introduction: The 
Vibration- Rotation- Tunneling (VRT) States of 
van der Waals Molecules and Their Spectra 

Several papers in this issue describe the ab initio 
calculation of intermolecular potentials, and other 
papers are concerned with the experimental spectra 
of van der Waals molecules. It is well known that 
these spectra, especially if the low-frequency inter- 
molecular modes are resolved, are very sensitive 
probes of the intermolecular potentials. In the 
present paper we explain and illustrate the theoreti- 
cal and computational methods used to obtain the 
spectrum from a given intermolecular potential. 
Comparison of the measured and computed spectrum 
can be used to check the quality of an ab initio 
potential or, after the introduction of some empirical 

Permanent address: Department of Chemistry, University of 
Warsaw, Poland. 

parameters, to fit the experimental spectrum and 
thus to  improve the potential. Given a potential 
energy surface, the calculation of the spectra involves 
two steps: first, one has to calculate the bound states 
(and sometimes resonances) of the van der Waals 
complex; next one has to  compute the intensities of 
the transitions between these states from their wave 
functions and dipole (for emission or absorption 
spectra) or polarizability function (for Raman spec- 
tra). We concentrate on the calculation of the vibra- 
tion-rotation-tunneling (VRT) states from a given 
potential surface, i.e. on the nuclear motion problem, 
the second step in the Born-Oppenheimer approxi- 
mation. 

In van der Waals complexes there is, by definition, 
a hierarchy in the nuclear motions. Within the 
stable, chemically bound molecules that constitute 
such a complex, the atoms (nuclei) vibrate fast. The 
motions of the molecules in the complex, against the 
weak van der Waals forces (or the somewhat stronger 
hydrogen bonding) that hold it together, are much 
slower. This allows another Born-Oppenheimer-like 
separation between the intramolecular vibrations 
and the intermolecular motions. The latter usually 
have large amplitudes and, since there are often 
multiple minima in the potential surface with only 
low barriers between them, the intermolecular “vi- 
brations” may look more like hindered rotations or 
tunneling motions. In practically all cases there is 
a strong coupling between the different intermolecu- 
lar degrees of freedom. Sometimes, the stable mol- 
ecules that constitute the complex are flexible. In 
that case, some of the intramolecular modes may 
have low frequencies and large amplitudes as well, 
and will couple strongly to the intermolecular or van 
der Waals modes. In the Born-Oppenheimer-like 
separation of the intra- and intermolecular modes 
they may have to be included with the latter. I t  will 
be clear from this description that the more or less 
standard methods, based on the harmonic oscillator/ 
rigid rotor model with (perturbation) corrections, 
which are used to study the rovibrational spectra of 
nearly rigid  molecule^^-^ are not applicable to  the 
intermolecular modes in van der Waals complexes. 
A new set of methods especially designed to compute 
the VRT states of van der Waals molecules is, and is 
still being, developed. These methods have much in 
common with the quantum theory of molecule scat- 
tering. This is natural since the scattering states of 
a pair of molecules are in fact the continuum states 
of a van der Waals molecule. In the present paper 
we describe these methods and illustrate their ap- 
plication on several examples. 
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This paper is organized as follows. First we discuss 
the different choices of coordinate systems that are 
being used in the study of van der Waals molecules 
and give the corresponding kinetic energy expres- 
sions. The derivations of these expressions are 
outlined in Appendix A. We then discuss the analytic 
forms of the intermolecular potential energy surfaces. 
Since heavy emphasis will be on fits in terms of 
Legendre functions and their more-dimensional gen- 
eralizations, we summarize the more important facts 
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of the spherical functions in Appendix B. Given the 
Hamiltonians, we go on to discuss how to obtain their 
eigenstates. From the eigenstates we may obtain 
dimer properties and transition intensities. This is 
the topic of the next section. Permutation-inversion 
symmetry plays an important role in van der Waals 
molecules, which are highly nonrigid. We touch 
briefly on this subject, and in Appendix C we go 
deeper into this aspect of the theory. The next 
section is devoted to concrete results of calculations 
and their comparison with experiment. As examples 
we discuss the argon atom in interaction with Hz, 
NH3, HzO, and benzene. We look a t  He-HF and 
finally a t  the strange case of the ammonia dimer. 

I/. The Calculation of VRT States and Spectra 

A. Choice of Coordinates 
The development of an optimum strategy for the 

calculation of the bound (and scattering) states of a 
van der Waals molecule begins with the choice of 
coordinates. The nature of the motions in such a 
complex implies that one has to use mostly curvilin- 
ear coordinates. If the monomers in the weakly 
bound complex are considered to  be rigid, then this 
follows immediately from this constraint. But, even 
if the monomers are not frozen, it is better to  use 
curvilinear coordinates, in order to achieve the best 
separability between the internal motions of the 
monomers and the van der Waals motions. For the 
fast vibrations of the nearly rigid monomers it is 
customary to use the standard (harmonic) normal 
coordinates. These are linear combinations of the 
(mass weighted) atomic displacements that satisfy 
the Eckart conditions. Their coefficients might be 
determined by the standard Wilson GF-matrix 

A natural choice of van der Waals 
coordinates in a dimer is given by the distance R 
between the centers of mass of the monomers A and 
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B and the Euler angles (A = (4,4,6A,VA) and ( B  = 
( 4 B , & , q B )  that define the orientations of the Eckart 
frames on the monomers. These Euler angles may 
be defined with respect to  a laboratory (or space- 
fixed) frame or with respect to  a frame that is 
somehow embedded in the dimer. The latter has 
advantages if one tries to  separate the “Vibrations” 
of the dimer, Le. its internal (van der Waals) motions, 
from its overall rotations. This separation of vibra- 
tions and rotations always involves an approxima- 
tion, even in the case of nearly rigid molecules. For 
a highly nonrigid van der Waals complex there will 
be strong vibration-rotation coupling. Still, in cal- 
culations it may be advantageous to  introduce this 
separation in first instance, and then to include the 
coupling terms in the second step. We will return to 
this point later, when we discuss the dimer Hamil- 
tonians. It will be explained that the optimum choice 
of the angular coordinates is in fact determined by 
some characteristic properties of the system at hand, 
such as the rotational constants of the monomers and 
the anisotropy of the intermolecular potential. These 
properties determine already to some extent the kind 
of VRT motions in the complex, the approximate 
constants of the motion and, thereby, the coordinates 
that achieve the best separability. 

It may occur that the rotations of the monomers 
are strongly hindered in some directions and less in 
others, so that the van der Waals motions follow 
certain (curved) pathways. In such a case one can 
introduce special curvilinear coordinates that de- 
scribe the motions along these pathways and the 
motions orthogonal to  them. Examples are given by 
the semirigid bender coordinates in the HF dimer4 
and the specific tunneling pathways in the H20 
dimer.5,6 Also it may happen that certain intra- 
molecular motions are relatively easy so that they 
lead to observable tunneling splittings and coupling 
to the van der Waals motions. An example of this is 
the umbrella inversion tunneling in NH3, which 
occurs also (but more or less hindered) in van der 
Waals complexes such as A ~ - N H S ~ - ~  and NH3- 
NH3.10-12 These examples will be treated in section 
111. An additional curvilinear coordinate in that case 
is the NH3 umbrella angle; in the calculationsg this 
coordinate is treated along with the intermolecular 
coordinates. 
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dependence on the intramonomer coordinates is to  
assume that the monomers are rigid, and even this 
seemingly crude model works well in many cases, 
especially if one adopts the vibrationally averaged 
geometries of the nearly rigid monomers, instead of 
their equilibrium geometries. And, in the treatment 
of the example Ar-NH3 in section 111, we will discuss 
how to reintroduce a monomer coordinate that cor- 
responds to a large amplitude motion. 

The kinetic energy expression for a set of general 
curvilinear coordinates qi has been given by Podol- 
sky,14 see also ref 15, 

B. The Hamiltonian, Kinetic Energy Expressions 
Even when we choose a set of intramolecular and 

intermolecular coordinates as described in section 
II.A, the nuclear motion Hamiltonian in a van der 
Waals complex depends on both. In this review we 
will not explicitly write its dependence on the in- 
tramolecular (normal) coordinates of the nearly rigid 
monomers. If one assumes the standard Eckart or 
Watson forms3J3 of the Hamiltonians for these mono- 
mers, then it is easy, if necessary, to reintroduce the 
intramonomer coordinates into the Hamiltonian of 
the complex. Often one may get rid of the intra- 
monomer coordinates by averaging the Hamiltonian 
of the complex over a given vibrational state of each 
monomer, as the monomer vibrations are usually 
faster by 1 or 2 orders of magnitude than the van 
der Waals motions. The simplest way to avoid the 

112 T 112 -1 T=1/8-  Pqg G Pq 

where pi = -ih(a/@i) are the momenta conjugate to  
qi, G is the metric tensor and g is the determinant of 
G, see Appendix A. In this appendix the Podolsky 
expression has been explicitly worked out for differ- 
ent sets of coordinates which are convenient to  
describe van der Waals dimers. The simplest Hamil- 
tonian for a dimer consisting of two general, non- 
linear, monomers is obtained by defining both the 
Euler angles (A = (@A@A,wA) and ( B  = ( ~ B , O B , ~ B )  and 
the polar angles I? = (p,a) of the vector 5 AB with 
respect to  a space-fixed (SF) frame. The kinetic 
energy expression in this Hamiltonian follows im- 
mediately from the diatom Hamiltonian in Appendix 
A.l ,  and the rigid rotor Hamiltonian in Appendix A.2. 
It simply reads 

(2) T = TA + TB + TAB 

with Tx, X = A or B,  given by 

(3) 

and 

cf .  eqs A54, A39, and A56. AX, Bx, and CX are the 
rotational constants of monomer X, the jiF are the 
usual monomer angular momentum operators given 
in eq A52, is the dimer reduced mass, and ZSF is 
the end-over-end angular momentum operator. Al- 
though this choice of SF coordinates leads to  the 
simplest kinetic energy expression, the problem is 
that the intermolecular potential is not easily ex- 
pressed in these coordinates. Instead, the potential 
is naturally dependent on the internal angles of the 
complex, i.e the angles that-relate the monomer 
orientations to  the dimer axis R. These are the Euler 
angles in the embedded dimer frame of Appendix A.4. 
Still, it may be advantageous, when the end-over- 
end rotational constant ( 2 , ~ & ~ ) - ~  of the dimer is large 
in comparison with the strength of the anisotropy in 
the intermolecular potential, to use the space-fixed 
coordinates that lead to eqs 2-4. This situation is 
called coupling case ( a )  in the early paper on van der 
Waals molecules by Bratoz and Martin16 and case 1 
in a review by Hutson.17 It corresponds to the nearly 
free rotation of the monomers in the complex. In 
other words, the monomer rotational quantum num- 
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bers (e.g. j~ and j~ in the case of linear molecules) 
and the end-over-end angular momentum I are nearly 
good quantum numbers to  describe the dimer states. 
The price one has to pay when using these SF 
coordinates is that the intermolecular potential has 
to  be expressed in a specific analytic form, in terms 
of the Euler angles ciF and cy of Appendix A.4, and 
then to be transformed to an expression in terms of 
the angles E and gF. This will be discussed in 
section 1I.C. In practice this coupling case arises only 
for H2, HD, or D2 containing van der Waals com- 
plexes. 

In most other cases it is convenient to  use the 
dimer-embedded frame of Appendix A.4. The expres- 
sion of the potential causes no problems then, and 
the kinetic energy operator reads 

where J is the total angular momentum of the dimer, 
(JSFI2 is given by eq A80 and is related to 3 via eq 
A79. This expression has been derived from eqs 2-4 
by Brocks et aZ.18 with the use of chain rules. An 
alternative derivation is given in Appendix A.4. At 
first sight it seems that one may simply obtain eq 5 
by introducing the dimer (BF) frame and substituting 
(ZBF)2 = (J - j A  - j ~ ) (  J - jA - j ~ )  into eq 4. This is 
assumed in many expositions of the present theory, 
for instance refs 19-21. From the derivations in 
Appendix A.4 and in ref 18 it is evident, however, 
that this ignores the fact that J and jx do not 
commute. Moreover, this procedure does not yield 
the explicit expressions (in terms of differential 
operators) for the components of J ,  which are quite 
unusual and which do not obey the standard, eq A30, 
or even the so-called anomalous,22 eq A37, commuta- 
tion relations. It implies that one must accept 
without proof that J acts in the usual manner on 
rotation functions, but, as was shown by Brocks et 
aZ.18 and in Appendix B this only holds for a specific 
choice of basis and is not true in general. 

The dimer frame of Appendix A.4 is embedded by 
using only two extqnal Euler angles: the polar 
angles of the vector R. It is shown in the Appendix 
of ref 18 how to introduce the third external Euler 
angle as an embedding angle. The resulting kinetic 
energy expression becomes rather complicated, how- 
ever, and it has the drawback that, in the case of 
identical monomers A and B,  the interchange sym- 
metry is no longer explicitly visible. Moreover, the 
resulting G tensor becomes singular for linear con- 
figurations of the dimer. Yet, in certain cases it may 
be useful to apply this form. 

For dimers that consist of a rather large nonlinear 
molecule and an atom, such as b e n ~ e n e - A r ~ ~ 3 ~ ~  it 
may be advantageous to use an Eckart frame which 
is embedded in the molecule. The corresponding van 
der Waals coordinates are CA = (f#JA,OA,+A), the Euler 
angles that describe the orientation of the molecule- 
embedded frame with respect to  a space-fured frame, 
and the Cartesian or polar components of the vector 
5 E a with respect to  the molecule frame. The 

kinetic energy expression 

has been given in refs 23 and 24, ]IBF is the inertia 
tensor of the molecule and PR is the momentuq 
conjugate to  R, which is the coordinate vector of R 
in the BF frame. An alternative derivation is given 
in Appendix A.3. 

If one prefers to  use still other coordinates to  
describe the motions in van der Waals complexes, one 
has to  derive the metric tensor that corresponds to 
these coordinates and, according to the recipe of 
Appendix A, to  substitute this tensor into the Pod- 
olsky formula for the kinetic energy. The same 
prescription can be followed if one wishes to  include 
specific internal motions in flexible monomers, or if 
one considers van der Waals complexes consisting of 
more than two monomers. 

C. (A6 Initio) Intermolecular Potentials, 
Representations 

Since there are several in this issue 
which deal with the ab initio calculation of inter- 
molecular potentials, we will not discuss this problem 
in our contribution. Let us just mention that these 
computations can be divided in two categories: they 
are based on the supermolecule approach or on 
symmetry-adapted perturbation theory (SAP"). Both 
methods have already shown to be able to  yield 
accurate potentials for (small) van der Waals 
dimers. We have some preference for the SAPT 
a p p r o a ~ h , ~ ~ p ~ ~ - ~ ~  because it gives directly the indi- 
vidual contributions to  the potential. Its accuracy is 
achieved by a well-balanced inclusion of the (intra- 
and intermonomer) electron correlation in these 
contributions. Moreover, the knowledge of the indi- 
vidual short-range and long-range terms makes it 
easier to  obtain accurate analytical fits of the poten- 
tial surface. This, in turn, greatly facilitates the 
calculation of the VRT states. It is relevant, in this 
respect, that, because of the occurrence of multiple 
minima in the potentials of most van der Waals 
molecules, and due to the floppiness of these systems, 
the calculation of the VRT states usually requires the 
knowledge of the complete potential surface. Later 
in this section we will make some comments on the 
various possible ways to represent the potential, 
which depend on the strategy that is chosen to 
calculate the VRT states. 

First, we want to  mention the spherical expansion 
of the intermolecular potential for a dimer.35 This 
expansion is a generalization of the well-known 
Legendre expansion17 for atom-diatom systems or 
the expansion in spherical harmonics7 for atom- 
(nonlinear) molecule dimers. In its most general 
form it is expressed in the Euler angles E and 
gF of the monomers and the polar angles f2 = @,a) 
with respect to  a space-fixed frame 

The orthogonal set of angular functions, labeled by 
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Table 1. Some Properties of Spherical Harmonics 
c‘,(O,g) = [ k / / ( 2 1  + 1)11’2 pm(O,g) and Wigner D Matrices 
D‘ ,(a&) That Are Useful in the Symmetry 
Aaaptation of Angular Basis Functions 
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where the functions D:k are Wigner rotation func- 
tions (see Appendix B), C t  are spherical harmonics 
in the Racah normalization and the expression in 
large brackets is a 3 - j  Since the functions 
A{A) form a complete set, the expansion in eq 7 is 
exact, in principle. In practice, one may truncate the 
expansion when the coefficients u { A ) ( R )  have become 
sufficiently small. These coefficients depend only on 
the distance R; if we include the dependence of the 
intermolecular potential on the molecular geometries 
they depend on the intramolecular (normal) coordi- 
nates too. One advantage of the spherical expansion 
is that it explicitly shows the anisotropy of the 
potential; the term with {LA&A,LB&B,L} = {O,O,O,O,O} 
is the isotropic potential. Another advantage is that 
it can immediately be written in terms of the BF 
coordinates. One just has to  realize that, by con- 
struction, the angular functions A{*) are invariant 
with respect to  any frame rotation and to use the 
property that the polar angles = are (0,O) with 
respect to  the dimer-embedded frame. Substitution 
of CL(0,O) = BMO yields, then 

For atom-molecule dimers LA = KA = MA = 0. With 
the use of the properties of Wigner D functions and 
spherical harmonics given in Table 1, we find that 

the angular expansion functions become 

The well-known Legendre expansion for atom- 
diatom systems, where KB = 0, is obtained by the 
simple substitution of G(0,q) = PL(COS 0). 

In ab initio calculations of the potential one always 
chooses a BF frame. The expansion coefficients can 
be written as 

with d(x = sin Ox d& d0x dqx. After the calculation 
of the potential V on a grid of angles (:F and (EF, the 
integration in eq 11 can be performed by numerical 
q~adrature,~‘ for each distance R. Actually, one may 
choose the BF frame such that one of the Euler 
angles, either @y or #, is equal to  zero and can be 
omitted from the integration. If we deal with simpler 
dimers, e g .  if A or B is an atom or a linear molecule, 
this procedure can be further simplified. Or, if A or 
B have some point group symmetry, we can reduce 
the integration intervals. The expansion coefficients 
uIA1(R) which are thus obtained define the potential, 
both with respect to  the BF frame, via eqs 7 and 9, 
and with respect to  the SF frame, via eqs 7 and 8. 
The transition from eq 9 to  eq 8 is in fact the most 
general way to describe the transformation of a 
potential from BF coordinates to  SF coordinates. For 
the Legendre expansion in atom-diatom systems 
this transformation is described in refs 17 and 20. 

Also in practical calculations of the VRT states of 
a van der Waals dimer the spherical expansion of the 
potential may be very convenient. If the angular 
basis in such calculations is chosen as (coupled) 
products of monomer and overall rotor functions, all 
the angular integrals in the matrix elements of the 
potential are just 3n-j symbols, see section 1I.D. For 
the same reason the spherical expansion is used in 
most scattering calculations. Only when the poten- 
tial is too strongly anisotropic this procedure becomes 
inefficient, since one needs too many terms in the 
spherical expansion and too large a basis. 

We can also explain now why in most cases the use 
of BF coordinates is the most convenient. As it 
follows from the relation MB = -MA in eq 9 and from 
the definition of the Wigner D functions in eq B1, 
the intermolecular potential depends only on the 
difference angle 4~ - @A, not on @A itself. Hence, in 
the BF angular basis of eq B18, functions with 
different K are not mixed by the potential. Off- 
diagonal matrix elements between such functions are 
given only by the Coriolis terms f j ~  - t j ~ ) . J / ( p ~ & ~ )  in 
the BF kinetic energy operator, eq 5.  In practically 
all cases (except for Hz containing dimers or very high 
values of J), these terms are much smaller than the 
anisotropy of the potential. This anisotropy is domi- 
nated by the leading terms u { A ~ ( R )  with (A} # 
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{O,O,O,O,O}. In all these cases K,  which is the eigen- 
value of both J,  and j ,  in Appendix A.4, is a nearly 
good quantum number in the dimer. These cases are 
treated as coupling case (b )  by Bratoz and Martin16 
and as cases 2 and 3 by Hutson.17 Even when the 
complex becomes nearly rigid, K is still a good 
quantum number in many van der Waals dimers, 
because such dimers are often prolate near-sym- 
metric tops due to the relatively large van der Waals 
bonding distance R. Coupling case ( c )  of Bratoz and 
Martin16 is not explicitly treated here, since this is 
the case where a van der Waals dimer is considered 
as a nearly rigid molecule to  which the standard 
formalism for vibrations and r~ ta t ions l -~  can be 
applied. One must be careful, however, because the 
vibrations in van der Waals molecules have large 
amplitudes and rotation-vibration coupling is strong, 
so that the usual perturbation expansions for the 
effects of anharmonicity and rotation-vibration cou- 
pling may not converge. Still, in some cases like Ar- 
benzene (see section 1II.D) one may use the harmonic 
oscillator-rigid rotor quantum numbers to  label the 
(lowest) VRT states. 

At the end of this section, we make some observa- 
tions regarding other, analytic or discrete, represen- 
tations of the potential. These are closely connected 
to the method chosen to calculate the VRT states, so 
it is not so easy to make general remarks. If one 
chooses a discrete variable representation (DVR)38 of 
the VRT states, for example, then it is only required 
to know the potential on a grid of quadrature points. 
But even then, if the potential has to  be obtained 
from ab initio calculations, the DVR method may 
require too dense a grid to  evaluate the potential in 
all points. Analytic fitting (global or using splines) 
or interpolation may solve this problem. A global 
fitting model which is applied widely is the atom- 
atom model:39 VAB = &.A CjEB u&) with Lennard- 
Jones u&j) = A..r..-12 II II  - or exp-6 potentials 
u..(r..) II V = A,, II exp(-B..r.,) 1J V - C u r ~ - ~ .  A conceptual 
advantage of atom-atom potentials is that they also 
model the dependence of the intermolecular potential 
on the intramolecular degrees of freedom. In the 
standard applications of this model it is assumed that 
the atom-atom potentials are isotropic, which is a 
serious limit on its accuracy. In few cases, anisotro- 
pic atom-atom potentials have been i n t r o d ~ c e d . ~ ~  

Another manner to represent the anisotropy of the 
intermolecular potential is to  choose a parametrized 
R-dependent form with parameters that depend on 
the orientations of the molecules. An example is the 
Lennard-Jones potential 

with the parameters E and R, depending on the Euler 
angles CA and 5 ' ~ . ~ ~  In potentials that are used 
especially to  fit the spectra of van der Waals 
 molecule^,^^-^^ the short-range repulsion is modeled 
by 

(13) 

and the long-range electrostatic, induction, and dis- 

persion terms by 

The damping functions D,(R) correct the long-range 
contributions for overlap  effect^.^^,^^ The parameters 
in eqs 13 and 14 are not directly optimized, however. 
Instead, one adopts some reasonable (ab initio) 
values for all but the highest long-range coefficients 
C ,  and then writes the highest C&A,~B)  and the 
short-range coefficient A(f;l,(~) as functions of the 
(angular dependent) well depth E(~'A,(B) and position 
of the minimum Rm(<&J in the potential. The latter 
quantities and the exponent ,8(&,[~) are written as 
truncated expansions in the angular functions 
A{A~((A,[B) of eq 9. The actual fitting parameters are 
the coefficients in these expansions. So these occur 
in the potential in a highly nonlinear way. This 
procedure is chosen to reduce the number of fitting 
parameters and to avoid a high correlation between 
them. 

D. Methods for the Calculation of VRT States 
The methods developed to calculate the VRT states 

in van der Waals molecules can be divided into two 
classes: variational and nonvariational. In varia- 
tional methods one has to  choose a basis, the form of 
which, of course, will depend on the choice of the 
(intermolecular) coordinates, see Section IIA. With 
the space-fured coordinates, for instance, the basis for 
a dimer consisting of two arbitrary nonlinear mol- 
ecules can be written as 

cf. eq B15. The angular momentum coupling in this 
basis, by means of the Clebsch-Gordan coefficients 
(j1ml&m2/jm), takes already into account that the 
total angular momentum J and its space-fured z 
component M are exact quantum numbers, see Ap- 
pendix B. For the radial basis Q,(R) one uses 
analytic functions, such as the associated Laguerre 
functions4' which resemble the eigenfunctions of a 
Morse oscillator, or distributed G a u s s i a n ~ , ~ ~ , ~ ~  or 
numerical functions defined on a grid of R points. If 
the intermolecular potential is just weakly anisotro- 
pic, a convenient numerical basis may be obtained 
by solving the one-dimensional Schrodinger equation 
with the isotropic potential and the radial terms in 
the kinetic energy. If, on the other hand, the dimer 
potential has a deep well at  a certain orientation of 
the monomers, one may solve the one-dimensional 
equation with the R-dependent potential at  fured 
angles SA and CB. The solutions of the one-dimen- 
sional Schrodinger equation can be obtained by the 
Numerov-Cooley method,50 for example. One has to  
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expressions as in the SF case. The dimer term TAB 
is different, however. In Appendix B it is explicitly 
shown how it acts on the angular basis of eq 16. Most 
of its terms are diagonal in this basis, but the terms 
[(jAz +jBx)Jx -k ( jAy  + j~,)J,1/(&i.d?~) connect the basis 
functions K with functions K‘ = K & 1.  After 
expanding the potential as in eqs 7 and 9, the 
potential matrix elements over the BF basis in eq 16 
are 

( n ’ j a , k ’ A j ’ B , k ’ B j b B ~ K ’ ; J , M I V l n j A , k A j B , k B j m ~ , J ~  = 

remember that it is necessary to generate also 
numerical basis functions that represent the con- 
tinuum (for instance, by enclosing the system in a 
spherical box with finite or infinite walls), otherwise 
the set of functions @,(R) is not complete. A similar 
procedure, i.e. the solution of an effective one- 
dimensional radial Schrodinger equation, has also 
been usedlO with the analytic radial basis sets. The 
eigenvectors from the secular equation for the one- 
dimensional problem can be used as contraction 
coefficients for the radial basis functions in the full 
problem. 

In the case of somewhat stronger anisotropy it is 
more natural (because of the nearly conserved quan- 
tum number K, see section II.C), and also more 
convenient, to  use the BF basis 

It is shown in Appendix B that, for fixed jA, k A ,  jB, 
kB,jm, J ,  M ,  and K running from - min(Jjm) to + 
min(Jjm) the BF basis in eq 16 spans the same space 
as the SF basis in eq 15 with 1 running from IJ - 
jml to  J + j m .  So the final VRT states will be the 
same in both bases. 

In the SF coordinate system one has to use the 
kinetic energy operator of eq 2 .  The monomer terms, 
TA and TB in eq 3, act on the functions DekA(s“,“)* 
and D?;,(g)* and they yield the standard rigid 
rotor e x p r e s s i ~ n s . ~ ~ ~ ~  For example, for symmetric 
tops with AX = BX the operator TX is diagonal, with 
eigenvalues A X ~ ~ J X  + 1) + (CX - Ax)k?. Since the 
basis functions in eq 15 are eigenfunctions of (ZSFI2, 
with eigenvalue Z(l + 11, the dimer term TAB in eq 4 
is diagonal in the angular basis. If the potential is 
expanded as in eqs 7 and 8, its matrix elements are 

(n’~A,k’A~B,k’Bj’m, l ’ ;J ,Ml  VlnjA,kAjB,kB,k,,z;J,M) = 

where the expressions in large braces are 6 - j and 
9 - j symbols,36 respectively. 

In the two-rotor BF coordinate system one should 
use the kinetic energy operator of eq 5 .  The monomer 
terms TA and TB yield the same standard rigid rotor 

dKKc(@,,(R)l u{A)(R)I @,(R)) (- l)ia+jB+jm+L-k’A-k’B-K X 

{AI 

[(2j’A + 1)(2fB + 1)(2jA + 1)(2jB + 1 )  x 

(2fm + 1)(2j, + 1)1l’~ x 

LB jB j., L 
-k’A KA k A  -k’B KB k B  I( -K 0 K 

f ‘ A  LA jA )fE 

$ k ]  (18) 

The advantages of the BF basis become directly 
apparent now. The potential matrix elements are 
simpler than with the SF basis. This is especially 
advantageous for atom-molecule systems, wherejh 
= jA = LA = 0, and the 9 - j symbol in eqs 17 and 18 
becomes simply dj’d:,!jimdL&[(2fB + 1 ) ( 2 j ~  + 1)(%~ + 1)]-1’2. The remaining angular factors in eq 17 are 
called the Percival-Seaton coefficients.17~20 By con- 
trast with the corresponding expression in the BF 
coordinates, eq 18, these factors still contain the 6 - 
j symbol. Moreover, it is obvious from eq 18 that the 
potential does not couple BF basis functions with 
different K .  Although such functions are coupled by 
a Coriolis term in the kinetic energy, the correspond- 
ing off-diagonal matrix elements are small and they 
occur only for K’ = K f 1.  In calculations one may, 
in first instance, neglect these couplings and, thus, 
reduce the size of the Hamiltonian matrix by a factor 
(2J + 1) .  If one wishes to  go beyond this “helicity 
decoupling” approximation, one may solve a (smaller) 
secular problem in a truncated basis of eigenstates 
of the simpler Hamiltonian while reintroducing these 
terms, or one may take them into account by pertur- 
bation theory. 

Besides the fact that it gives a very simple kinetic 
energy expression and angular integrals over the 
potential which are just 3n - j coefficients, the use 
of the free rotor functions in the basis has another 
advantage. It does not introduce any bias for specific 
orientations of the monomers in the complex; these 
are free to find their most favorable orientational 
wave functions, depending on the barriers in the 
potential surface. Often, in van der Waals com- 
plexes, the orientations of the monomers are quite 
different in different VRT states. 

When the monomers in a van der Waals complex 
are strongly aspherical (very long or flat) and are 
larger than the van der Waals bonding distance, the 
potential becomes too strongly anisotropic and the 
use of the free rotor basis is no longer appropriate. 
A border case is Ar -ben~ene ,~~  where the spherical 
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expansion of the potential needs terms up to L g  = 
36 and the convergence of the VRT states requires 
angular basis functions as high asj, = 27. Other 
types of basis functions have to be applied in such 
cases, and it may be better to use other coordinates 
too. For atom-molecule systems, the BF frame may 
be embedded in the molecule, see Appendix A.3, 
which leads to the kinetic energy expression of eq 6. 
Instead of polar coordinates for the vector R, it is 
advantageous to use its Cartesian components R = 
(x ,y,z)  and to apply a product basis of harmonic 
oscillator functions Hk(x)Hl(y)Hm(z), centered at  the 
equilibrium position Re = (xe,ye,ze). Or, if the atom 
is assumed to be less well localized, one could use a 
basis of distributed G a u ~ s i a n s . ~ ~  The linear and 
angular momentum operators are simply 

ai& 

L a 2  1 p R  = -iti ala and 1 = R x pR (19) 

If these are substituted into the kinetic energy of eq 
6 and the coordinate and momentum operators are 
expressed in the ladder operators of the harmonic 
o ~ c i l l a t o r ~ ~ ~ ~ ~  (with frequency w and mass m) 

1/2 t x = [h/(2mw)l (a, + a,) 

van der Avoird et al. 

differential equations are solved by the numerical 
propagator  method^^^,^^ developed for scattering cal- 
culations. For bound states, it is not possible to  
choose the energy, however. One has to find, by 
iteration, those energies that produce the radial wave 
functions which vanish at  R - 00 and remain finite 
at  R = 0.59-62 Since this may be a rather time- 
consuming process, special methods for bound state 
calculations have been devised. In the SEPT (secular 
equation perturbation theory) method63 one first 
calculates a (small) set of uncoupled channel func- 
tions, then solves a secular problem with these 
functions as a basis, and next, includes more chan- 
nels by perturbation theory. The (first-order) per- 
turbation equations are again a set of coupled dif- 
ferential equations in the radial coordinate, but these 
do not contain the unknown energy. Recent improve- 
ments of this method, such as the ISE (iterative 
secular equation) method64 include the perturbed 
wave functions as additional basis functions in a 
(larger) secular problem. An advantage of these 
methods is that they are directly applicable to  the 
resonances, vibrational and rotational predissociation 
states, which are often found in van der Waals 
complexes. 

Nonvariational approaches which are based on 
discrete representations of the wave function are the 
DVR (discrete variable r e p r e ~ e n t a t i o n ) ~ ~ , ~ ~ , ~ ~  and the 
collocation method.66-68 As we have seen, the use of 
an analytic basis, say q&), leads to  simple kinetic 
energy expressions, but to  rather difficult multi- 
dimensional integrals over the potential. If, on the 
other hand, we would represent a wave function by 
the set of its values on a coordinate grid, Y(xi), the 
(diagonal) potential energy matrix is just given by 
the potential calculated at the grid points, but the 
kinetic energy would have to be evaluated by finite 
difference methods. This requires the use of high 
order difference formulas or dense multidimensional 
grids. Information on the (approximate) shape of the 
potential is not exploited. The “pseudospectral” 
methods (DVR and collocation) combine the best of 
both worlds. They are based on the property that 
the expansion of the wave function in the analytic 
basis q n ( x )  with dimension N is equivalent to  a 
discrete representation Y(xJ with N points xi, pro- 
vided that the potential energy matrix elements are 
approximated by the appropriate quadrature. For 
bases of orthogonal polynomials (of various  kind^)^^)^^ 
we must use the associated Gaussian quadratures 
with points xi and weights wi. Following Mucker- 
man,71 we show this by introducing the (analytic) grid 
basis 

p, = i[(fimw)/21 1/2 (a, t - a,) 

which act on the basis as follows 

a B & )  = (k + 1)1/2Hk+l(x) 

(21) 

it is still possible to  evaluate all the kinetic energy 
matrix elements analytically. For the matrix ele- 
ments of the potential V(xy,z) over the harmonic 
oscillator basis it is appropriate to  use Gauss- 
Hermite-type quadrature37 with the same center and 
scaling as the basis functions H d x ) ,  Hl(r), and Hm(z) .  
This procedure works well, even if the molecule 
becomes as large as fluorene.23 In other systems, e g .  
the van der Waals trimer Ar-Ar-HC1,21 one has 
proposed to combine the different types of analytical 
basis functions for the different intermolecular coor- 
dinates. This depends on the expected degree of 
localization in these coordinates. 

Let us now discuss some nonvariational methods. 
The traditional nonvariational method to obtain the 
bound states of van der Waals dimers is the close- 
coupling method, as implemented for scattering 
 calculation^.^^^^^ The angular basis functions used 
in such calculations are the same as in eq 15, for SF 
coordinates, and eq 16, for BF coordinates. The 
angular matrix elements are the same as in eqs 17 
and 18, respectively. The radial functions are not 
expanded in a basis, however, but they are written 
as the R-dependent “coefficients” in the expansion 
of the exact wave function in the complete set of 
angular (channel) functions. When this expansion 
is substituted into the Schrodinger equation one 
obtains a set of coupled differential equations for the 
radial functions of the different ~hanne1s.l~ In prac- 
tice, this set is truncated, of course. The coupled 

with the N x N transformation matrix T given by 

(23) 

The theory of orthogonal polynomials tells us that 
the integrals over products of these polynomials are 
evaluated exactly by the corresponding Gaussian 
quadrature. As a result we find that T is orthogonal 
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N-dimensional basis: Y(x) = C,q,(x>C,. The Schro- 
dinger equation is required to be satisfied exactly, 
for N points xi in the coordinate space. The resulting 
equation, in Dirac notation, 

N 

C [ ( x i ~ ~ l q , )  - E ( X ~ I ~ , ) I C ,  = o for i = 1, ..., N 
(28) 

is an N x N eigenvalue equation for a nonsymmetric 
matrix Hi, = (xilHlq,) and “overlap’ matrix Si, = 
(xi!q,)  = I&$. The advantage of this method is that 
it is easy to program; one has just to  compute at the 
grid points xi the values of the potential, the basis 
functions q,, and their second derivatives (which 
occur in Hq,) .  If the basis qn consists of orthogonal 
polynomials, it is advised to choose the associated 
quadrature points xi. Formally, this method can be 
justified in the limit of a complete basis q,. Or, it 
can be derived variationally, by searching for a 
stationary point of the asymmetric functional 
(Y’IHIY), while expanding Y in the analytic basis 
qn and Y’ in a basis localized at  the grid points xL.68 
This stationary point is not required to be a mini- 
mum, however, and the collocation method is not 
variational in the sense that it gives an upper bound 
to  the exact ground state energy. The eigenvalues 
of the nonsymmetric matrix Hi, may even become 
complex. In practive, the collocation method seems 
to work we11.43,66-68,74 

For a basis q, of orthogonal polynomials with the 
associated quadrature points xi, this method can be 
easily related to the DVR described earlier. In the 
DVR method, it is only the potential energy matrix 
which is assumed to be approximated by numerical 
quadrature. This matrix can then be evaluated in 
the grid basis. The kinetic energy is evaluated in the 
analytic basis q, and then transformed to the grid 
basis yji by multiplication with TT from the left and 
with T from the right. In the collocation method the 
complete Hamiltonian matrix H,, is approximated 
by numerical quadrature. We define an alternative 
grid basis yj’i = V ~ W ~ ” ~ .  Just as yji ,  the ith element 
of this basis vanishes at all grid points except xi,  cfi 
eq 25, but its value at this grid point is w;’. The 
basis q’i is obtained from the analytic basis qn by 
transformation with T’ = W-l’z, where W is the 
diagonal matrix with elements equal to the weights 
wi. The matrix (TIT is just the “overlap” matrix in 
the collocation equation, eq 28, and it is not difficult 
to show now that eq 28 can be obtained from the 
“normal” secular equation by multiplication with the 
matrix (TIT, only from the left. This implies, in other 
words, that the matrix elements Hin in the collocation 
equations are constructed with the analytic basis q,, 
from the right, and with the grid basis q’i, from the 
left. The kinetic energy matrix is kept simple by 
letting the differential operators act on the analytic 
basis, to  the right. Also the potential energy matrix 
elements remain simple, however, since the basis 
functions q’i vanish, except at  one grid point xi. The 
inverse weights, which are the function values at 
these points, reflect that, by contrast with DVR, no 
weights are involved in the collocation method. In 
spite of its simplicity, the collocation method may be 

n=l 

i 

From this property it follows easily that the functions 
y j k  vanish at all grid points except xk and have the 
value w;“ at this point 

n n 

The essential assumption in the DVR method38,52*65 
is that the potential energy matrix elements can be 
approximated by the corresponding quadrature for- 
mula 

(26) 
k 

Then, with the use of eq 25, it is easy to show that 
the potential becomes diagonal in the grid basis 

(27) 

It is readily demonstrated that the transformation 
to the analytic basis, see eq 22, would recover the 
normal quadrature formula, eq 26. In reality, it is 
more advantageous to keep the potential matrix 
diagonal, however. The kinetic energy matrix is 
calculated with the analytic basis q,(x)  (if this basis 
is conveniently chosen it may even be diagonal), 
transformed to the grid basis by multiplication with 
TT from the left and with T from the right, and then 
added to the potential matrix. This route is prefer- 
able because, in multidimensional systems, the ki- 
netic energy is better separable. In Cartesian coor- 
dinates it separates exactly; in curvilinear coordinates 
the kinetic energy matrix retains a relatively simple 
structure too. Moreover, it stays sparse. 

In applying DVR to multidimensional systems it 
is most common to use a direct product basis, and a 
direct product of quadrature grids in the individual 
coordinates. Improvements of this scheme have been 
proposed recently.72 Or, one may use discrete rep- 
resentations in some coordinates and analytic bases 
in others. For instance, in atom-diatom systems the 
DVR in the angular coordinate-with Legendre func- 
tions Pl(cos 0) as the basis and Gauss-Legendre 
quadrature for cos 8-has been ~ o m b i n e d ~ ~ , ~ ~  with a 
basis of distributed Gaussians for the radial coordi- 
nate R. DVR is not a variational method: due to the 
approximation of the potential matrix elements by 
the quadrature formula the lowest DVR eigenvalue 
is not necessarily an upper bound to the exact ground 
state energy. 

A closely related nonvariational method is the 
collocation In this method the exact 
wave function is expanded in a finite (analytic) 
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not the most efficient from the computational point 
of view. If the diagonalization of the H matrix is the 
most time-consuming step (as it is in most calcula- 
tions, even with the variational methods), the time 
gained by the easier construction of the matrix is 
more than lost by the slower diagonalization of a 
nonsparse, nonsymmetric matrix. 

A common property of all basis set and discrete 
representation methods is that, finally, one has to  
solve the (symmetric or nonsymmetric) matrix eigen- 
value problem. Standard library routines are avail- 
able for this purpose. If the basis becomes too large 
to  store the Hamiltonian matrix in the computer 
memory, one may also use a different type of iterative 
procedure, such as the L a n c ~ o s ~ ~ , ~ ~  or D a v i d ~ o n ~ ~  
algorithm. If the system has many degrees of free- 
dom, or if the construction and diagonalization of the 
H matrix has to  be repeated many times in the 
process of improving the potential by fitting the 
experimental spectrum, it is desirable to reduce the 
size of the basis. Early work in this dire~tion’~ used 
BOARS: the Born-Oppenheimer (or adiabatic) sepa- 
ration of the angular and radial motion. More 
recently, it has become common practice to  use 
(sequential) adiabatic reduction  method^:^^,^^ one or 
more coordinates are clamped and the eigenvalue 
problem is solved for the remaining degrees of 
freedom. The eigenvalues, for different values of the 
clamped coordinates, form the effective potentials for 
the second step in the calculation. Adiabatic (or 
quasiadiabatic) reduction implies that in this second 
step, which yields the final wave function, one uses 
a truncated set of eigenfunctions from the first step. 
In multidimensional systems this procedure may be 
followed sequentially, in the different coordinates. It 
is easily implemented in DVR methods, which al- 
ready use a finite grid representation for some of the 
coordinates. But, as we have been seen in the 
treatment of the off-diagonal Coriolis coupling in the 
scheme with the BF free rotor basis, similar simpli- 
fications can be achieved in other methods. 

We end this discussion of methods for the calcula- 
tion of the VRT states of van der Waals molecules 
by briefly mentioning the quantum Monte Carlo 
method. The variational Monte Carlo p r ~ c e d u r e , ~ ~ , ~ ~  
in essence, is a method for the numerical computation 
of the multidimensional integrals of the Hamiltonian 
over a trial wave function. So, the accuracy of this 
method is limited by the trial function chosen. The 
Green’s h c t i o n  or diffusional Monte Carlo methods0t8’ 
is very powerful, however, and it will converge to the 
exact quantum states of the system. In its “standard” 
version, which converges to  the ground state, it has 
been applied to several van der Waals complexes 
including even multiple monomers.80,82 Also excited 
states can be studied, if they have a different sym- 
metry from the ground state, so that their nodal 
planes are fixed, or if one applies the following 
adiabatic separation scheme?’ A special coordinate 
in which the wave hnction is expected to have a node 
is clamped (at different values) and the Monte Carlo 
method is applied to the remaining degrees of free- 
dom. The Schrodinger equation for the special 
coordinate is solved in the traditional manner (nu- 
merically or in a basis) with the effective potential 
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given by the energies from the Monte Carlo calcula- 
tions. This adiabatic separation involves an ap- 
proximation, however, and it may be difficult to  
define the special (curvilinear) coordinate beforehand. 
A new, “correlation function” quantum Monte Carlo 
method which, by the use of the operator exp(-tH), 
will converge directly to  vibrationally excited states 
(at the expense of a higher computational cost), has 
been devised also,83 but not yet applied to van der 
Waals molecules. For a more detailed description of 
these Monte Carlo methods we refer to  the papers 
mentioned in this paragraph. 

E. Properties, Transitions, and Intensities 

Most of the methods used for the calculation of the 
VRT states yield explicitly the wave functions of 
these states. It becomes relatively easy, then, to 
compute the different measurable properties and to 
evaluate the intensities of the transitions observed 
in spectra. The (infrared) absorption coefficient for 
the transition between two thermally populated VRT 
levels (i,J) and (z’,J’) is given byS4 

where E ~ , J  is the energy of the VRT state (i,J) and 2 
is the partition function 

Z = &,(2J + 1) exp(-E,,J/kII? (30) 
i,J 

It is assumed here that the distribution over the VRT 
levels is a Boltzmann distribution with temperature 
T; gi is the nuclear spin statistical weight of the level 
i, NA is Avogadro’s number, and the other constants 
are fundamental constants. The (calculated) wave 
functions of the VRT states are the kets IiJM); in the 
absence of external fields these are degenerate for 
M = -J,  -J + 1, ..., J .  The line strengths in eq 29 
are defined as 

If the wave functions IZJM) of the VRT states have 
been calculated in terms of the SF basis in eq 15, it 
is convenient to  express the space-fixed (spherical) 
components &F of the dipole moment operator in 
the same basis 

L 1  

(32) 

The angular functions B{*pm must transform as a 
vector quantity. In terms of the space-fured orienta- 
tion angles eF and eF and end-over-end angles l? 
they read 
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Table 2. Factors of &Ba$:;LA)R-LB-2 in the Induced 
Dipole Equation (Eq 40) with k 2 W 

with the composite index {A} = {LA&,LB$B,L}. This 
might be compared with the functions in eq 8 for the 
angular expansion of the potential. Since the latter 
functions are scalars, the combination of the two 
Clebsch-Gordan coefficients becomes simply a 3 - j  
symbol 

C (LAMA;L~BILMAB)(LMAB;I;VMIOO) = 
MAE 

If the dipole moment given by eq 32 and the wave 
functions IiJM) in terms of the basis in eq 15 are 
substituted into eq 31 for the line strength, all the 
occurring angular matrix elements are just 3n - j  
symbols. The result is similar to, but slightly more 
complicated than, the corresponding result for the 
potential, eq 17. 

If the wave functions IZJM) have been calculated 
in terms of the BF basis, eq 16, it is preferable to 
express the dipole moment operator in that basis too. 
The dipole components relative to  the BF frame are 
given by 

BF BF 
PtF(R,CF,CF) = C d::}k(R) B;I}k(CA ,SB (35) 

1'4) 

and the angular functions are 

The relation between the SF and BF expansion 
coefficients is given by 

d:I}k(R) = ds,F},@)(Lk;AOIlk) (37) 

This relation follows directly, as a special case with 
J = 1, from eq B17 derived in Appendix B. The 
relation between the SF and BF dipole components 
is 

1 

and the BF label k indicates whether a given transi- 
tion has a parallel (k = 0) or a perpendicular (k = 
fl) component. 

If the monomers have large dipole moments, the 
infrared transitions are strongly determined by these, 
and the corresponding coefficients in eq 35 become 
simply 

LB LA L k 
0 0 0 0 ( '13 ) d 3  
0 2 2 0 (-'/3)J6 

1 0 1 0 (-'/3)J3 
1 2 1 0 ( - ' / idJ15 

1 0 1 1 ('13) 4 3  
1 2 1 1 (1/30)J15 

1 2 3 1 ( ' ldJ15 

0 2 2 1 (- ' lz)J2 

1 2 3 0 (3~6)J10 

1 2 2 1 i ' l d J 3  

2 0 2 0 43 
2 2 2 0 (%)J2 1 
2 2 4 0 (-2/7)J105 
2 0 2 1 -1 
2 2 2 1 ( - 'IdJ7 

2 2 4 1 (- 5/14)2/42 

a A coefficient with K = -1 is obtained from the coefficients 
in this table with the same LE, LA, L values by multiplication 
with (-lY.+L~. The factors of &Aa$i:zB)R-LA-2 are obtained 
from the corresponding coefficients in this table by multiplica- 
tion with -(-lY.+L~. 

2 2 3 1 i-'lz)JlO 

where p~~ Qk and ,UK, QkB are the components 
of the permanent dipoles on the monomers, expressed 
in the monomer frames. If we wish to include also 
the dipole moment induced on monomer A by the 
permanent multipole moments Q$ on monomer B ,  
we must add 

where are the irreducible components of the 
(mixed) dipole-2l~-pole polarizability tensor of mono- 
mer A, with respect to  the monomer frame. For 1~ = 
1 this is the normal dipole polarizability, with the 
isotropic value given by = -(G~ + clyv + azzY 
J 3  and the axial anisotropic component by = 
(2azz - a, - qY)/J6 .  The dipole induced on mono- 
mer B is obtained if we interchange A and B in this 
formula, and multiply by ( - ~ ) L B + ~ - ~ B .  For the most 
common cases of a dipole moment induced by a 
monopole (charge), dipole, or quadrupole through the 
normal dipole polarizability we have listed the nu- 
merical values of the coefficients in Table 2. For 
special cases, such as atom-polyatom,s atom- 
d i a t ~ m , ~ ~ , ~ ~  and diatom-diatom c o m p l e ~ e s , ~ ~ ~ ~ ~  these 
formulas have been derived earlier. If monomer A 
is an atom, ZA = 1 and LA = 0, and the 6 - j  coefficient 
in eq 40 becomes simply dL&[3(& + 1)l-1'2. The line 
strengths, eq 31, are calculated in the BF basis of eq 
16 by the use of eqs 35 and 36 for the dipole moment, 
the computation of the radial integrals over eqs 39 
and 40, and the evaluation of the angular integrals 
in terms of 3n - j symbols. Again, the result is 
similar to  the expression, eq 18, for the potential 



1942 Chemical Reviews, 1994, Vol. 94, No. 7 

matrix elements, but slightly more complicated. For 
other (tensorial) properties, such as the polarizability 
function needed for the calculation of Raman intensi- 
ties, it is easy now to write similar expressions. 

As the van der Waals or hydrogen bonds are weak, 
the transitions between different VRT levels in a van 
der Waals complex are observed in the far-infrared, 
typically below 200 cm-l. They may also be seen in 
the mid- or near-infrared, however, or even in visible 
or W spectra, if they occur simultaneously with 
vibrational or electronic transitions in the monomers. 
van der Waals complexes are formed in relatively 
high concentrations during the expansion of a super- 
sonic nozzle beam; the use of such beams for spec- 
troscopy has two other important advantages. First, 
when the spectra are taken somewhat downstream 
from the expansion, they are practically free of 
collision and Doppler broadening. The spectral reso- 
lution can be enormously increased, so that the 
individual rotational J - J’ transitions are resolved, 
even for rather large complexes. This yields a wealth 
of detailed and accurate i n f o r m a t i ~ n . ~ ~ ~ ~ - ~ ~  Second, 
the molecules have become very cold, typically a few 
degrees Kelvin. Only some J levels of the ground 
state are populated, which leads to  simple spectra 
that can be (relatively) easily interpreted. Also the 
calculation of such spectra from the VRT states 
presents no special problems, once the wave functions 
of these states are In gas phase spectra 
higher states are populated too, which causes a 
multitude of hot bands. In combination with the 
lower resolution this leads to very complex spectra, 
with composite, overlapping band~ .~~- ’O~  Also the 
computation of such spectra from the VRT states 
becomes a major task.88J04J05 

van der Avoird et al. 

F. Symmetry Aspects 
In “normal” nearly rigid molecules it is customary 

to use the point group of the equilibrium structure 
to  classify the vibrations and the electronic states. 
This is just an approximate symmetry, however. In 
van der Waals molecules with multiple minima in 
the potential surface and large amplitude vibrations 
it is no longer valid. The symmetry group of such 
molecules contains (i) permutations of identical nu- 
clei, (ii) space inversion, and (iii) products of i and ii. 
Usually not all permutation inversions (PI’S) are 
physically meaningful in the sense that they give rise 
to  observable splittings; one only has to  consider the 
s o - ~ a l l e d ~ ~ ~ J ~ ~  feasible PI’S. There are two kinds of 
these. The first kind is equivalent to  a rotation of 
the (rigid) complex in isotropic space. In this case 
no energy barrier has to be surmounted. The second 
kind of feasible PI’S requires the tunneling through 
some barrier, deforming the complex to another 
equivalent structure that is distinguished from the 
earlier structure by the change in one or more 
internal coordinates. It is very hard t o  predict a 
priori if an operation of the second kind is feasible. 
Detailed experiments or elaborate calculations are 
required to do so. Furthermore, whether or not an 
operation is considered to be feasible depends on the 
resolution of the measuring device. 

The application of the molecular symmetry group, 
i.e. the group of all feasible PI’s, is treated in several 

t e x t b o o k ~ . ~ ~ ~ J ~ ~  In Appendix C we have shown, for 
the various coordinate systems commonly used in van 
der Waals molecules, how to derive the action of the 
PI’s on the coordinates. The action on the different 
basis functions then follows rather easily from the 
well-known analytic properties of these functions, see 
Table 1. In SF coordinates this derivation is rather 
trivial, and not much can be learned from it, since it 
is not possible in these coordinates to  separate the 
overall rotations of the complex from its internal 
motions. With the use of BF coordinates such a 
separation is possible, although approximate. The 
action of the PI’s becomes more complicated: each 
PI corresponds with an “equivalent rotation” of the 
BF framelos and a transformation of the internal 
coordinates of the complex. If the complex is nearly 
rigid and has a single equilibrium structure, the PI 
group contains just the operations of the first kind 
and it is isomorphic to  the point group of the 
equilibrium structure. The action of the PI’s on the 
internal coordinates is equivalent to  that of the point 
group operations on the small vibrational displace- 
ments. It is the additional PI’S, of the second kind, 
which make the VRT states of van der Waals 
molecules so interesting, however. 

The PI group symmetry can be used for different 
purposes. In the calculation of the VRT states, the 
adaptation of the basis to  the irreducible representa- 
tion (irreps) of the PI group leads to  a separation of 
the Hamiltonian matrix into smaller blocks. In some 
examples, such as (NH3)2,1° this simplification was 
essential to make the calculations practically feasible. 
Also the VRT states are symmetry adapted and, since 
the dipole operator is invariant under all permuta- 
tions of identical nuclei and antisymmetric under 
space inversion E*, this causes the (exact) selection 
rules. Further, approximate selection rules may be 
derived as well, by considering the separate PI group 
adaptation of the overall rotation functions and of the 
internal VRT wave functions. For this purpose, the 
components of the dipole operator should be ex- 
pressed with respect to the BF frame, as in eq 35. 
The PI group symmetry of the “parallel” and “per- 
pendicular” dipole components follows easily from the 
transformation properties of the coordinates. 

Finally, we note that also the nuclear spin eigen- 
functions must be adapted to the permutations of (all) 
identical nuclei. The spin functions are invariant 
under space inversion. Since the nuclei are bosons 
(for integer I )  or fermions (for half-integer I), it 
follows from the Pauli principle that the spatial wave 
functions of the VRT states are explicitly related, 
through their permutation symmetry, to  the occur- 
rence of specific nuclear spin quantum numbers. It 
is this relation that determines the nuclear spin 
statistical weightlo8 of each VRT level. For the 
vibrational spectra of nearly rigid molecules this is 
not relevant, but for floppy van der Waals molecules 
the permutation symmetry of the VRT states will 
strongly affect the spectra. So, the spectra that 
pertain to  the different nuclear spin species will be 
rather different. As, practically always, the various 
nuclear spin species occur simultaneously, the mea- 
sured spectra in fact consist of a set of overlapping 
spectra for all the species. In high-resolution spectra 
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The examples given are by no means complete. We 
forgo a discussion of the simplest of all van der Waals 
molecules: the rare gas (Rg) pairs. The spectroscopy 
of those dimers is discussed in ref 110 (p 403). For a 
long time it was thought that the He-He potential 
did not support a single bound state, but bound He2 
was observed recently.lll See ref 112 for a discussion 
of the Rg dimer potentials. Extensive work, which 
we will not explicitly review, has been performed also 
for Rg-HX dimers, with X = F, Cl, or Br. This work 
is summarized in ref 113. Further, we might men- 
tion the experimental and theoretical studies of the 
(HF)2 dimer. This system is a typical example of a 
diatom-diatom complex, for which the whole trajec- 
tory from a b  initio calculations of the potential 
surface to the spectra has been followed. We list only 
two p a p e r ~ , ~ l J l ~  which describe the calculation of the 
spectra from the potential and the comparison with 
the experimental data. For further information we 
refer to  these papers and the references therein. 

it is no problem to separate the individual species 
and to relate their spectra to the spectra calculated 
for the corresponding species. 

Ill. Comparison with Experimental 
High-Resolution Spectra, Verification of ab lnitio 
Poten tials, Semiempirical Potential Fits, 
Examples 

The route from the intermolecular potential to  the 
spectra and vice versa, for which the map has been 
laid out in the preceding sections, will now be 
illustrated on several examples. These examples are 
mostly taken from our own work, as we have il- 
lustrative material available for these systems. First, 
we will describe two atom-diatom complexes, Ar- 
H2 and He-HF, for which the route has been followed 
very precisely in both directions: recently calculated 
ab initio potentials reproduce the spectra with great 
precision, accurate semiempirical potentials were 
constructed already some time ago. 

Next we discuss two atom-polyatom dimers, Ar- 
NH3 and Ar-H20, where both directions were taken 
too, but the anisotropy of the a b  initio potential still 
had to be scaled to get agreement with the spectra. 
The semiempirical potentials which were obtained 
from fits to  the spectra are probably more accurate, 
but this is still being established by using them to  
calculate other observed data (such as state-to-state 
inelastic scattering cross sections). Higher quality 
a b  initio potentials are now becoming available for 
these complexes. In the example of Ar-NH3 an 
internal motion, the NH3 umbrella vibration and 
inversion, was included in the calculations of the far- 
and mid-infrared spectra. 

We then consider systems, some rare gas atom- 
aromatic molecule dimers, for which the use of 
“scattering” coordinates is better abandoned. This 
is because, for these large flat molecules, the distance 
to the rare gas atom is not too large at the van der 
Waals minimum, but at the same distance and other 
values of the angles, the atom feels a strong “steric” 
repulsion. The problem separates much better and 
is treated more naturally in Cartesian coordinates: 
z is the height of the rare gas atom above the 
molecular plane and x and y describe the lateral 
motions. For such systems, it proved to  be conve- 
nient to  embed the BF frame in the molecule and to 
use the kinetic energy operator in eq 6. 

Finally, as an example of a dimer consisting of two 
nonlinear molecules, we discuss NH3-NH3. The 
question whether hydrogen bonding occurs in this 
complex, and whether the (average) structure found 
from microwave spectra is significantly different from 
the (calculated) equilibrium structure, has been 
subject to  much debate. Far-infrared spectra became 
recently available, but it was not obvious which 
conclusions regarding the structure and the internal 
motions of this dimer had to be drawn from the 
various experimental data. Also the (incomplete) 
information about the potential surface from different 
a b  initio calculations was partly contradictory. We 
will show that, with the use of the two-rotor BF 
coordinates and a sufficiently large basis of sym- 
metrized free-rotor functions, this problem can be 
solved and these questions can be answered. 

A. Ar-H2 
The Ar-H2 van der Waals molecule is one of the 

most thoroughly investigated atom-diatom com- 
plexes, and the empirical potential energy surface for 
this system is probably the most accurately deter- 
mined of any atom-diatom potentials. One of the 
earliest studies of the anisotropic interactions in Ar- 
H2 was the work of Le Roy and van Kranendonk.l15 
They derived an anisotropic potential energy surface 
for Ar-Hz by fitting the potential to the near-infrared 
spectra of McKellar and Welsh.llG Although these 
spectra were measured in the gas phase, with very 
long path cells, the rotational structure could still be 
resolved because H2 is extremely light. Complemen- 
tary work was later reported by Dunker and Gor- 
don,85 who also based their fits on the McKellar and 
Welsh data. In 1980 Le Roy and Carleylg published 
further improved potentials based on these data. In 
the 1980s high-resolution near-infrared spectra,l17 
hyperfine spectra,l18 and molecular beam differential 
cross sections11s have been measured. Using these 
data Le Roy and Hutson120 gave a new multiproperty 
fitted potential for Ar-Hz. Their final potential fit 
has been very successful. It reproduces the results 
of all the measurements to within the experimental 
error bars, including the data not utilized in the fit. 
The authors give the value of the potential at the 
minimum to an astonishing accuracy of four figures, 
and the free parameters of the potential have uncer- 
tainties of about 1%. Very recently McKellar121J22 
was able to  measure also the far-infrared spectra 
which correspond to the pure van der Waals transi- 
tions, not accompanied by a vibrational excitation of 
the H2 molecule. 

Surprisingly, there is only one, very recent, full a b  
initio study of the potential and VRT states of this 
dimer. Williams et aL31 performed symmetry-adapted 
perturbation theory (SAPT) calculations of the com- 
plete (i.e., including variation of the H-H distance) 
potential energy surface for Ar-H2. For a detailed 
discussion of the resulting potential we refer the 
reader to  ref 31. Here, we only want to  stress that 
high-level theory and large spdfgh-symmetry basis 
sets carefully optimized for intermolecular interac- 
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Figure 1. Ab initio SAPT31 and empiricall20 indicated by 
TT3(6,8) interaction potentials of Ar-H2. 

tions have been used to achieve converged results. 
For a broad range of the configuration space the 
SAPT potential agrees to  almost two significant digits 
with the empirical potential of Le Roy and Hutson120 
(see Figure 1). In particular, at  the van der Waals 
minimum the two potentials agree within 3%. 

Although the SAPT potential surface agrees very 
well with the empirical potentials, its accuracy is 
better judged by direct comparison with experiment. 
The aualitv of the ab initio SAPT ~otentiaPl was 

ing the observed high-resolution near- and far- 
infrared spectra of M~Kellar. l l 'J~~ Since for Ar-H2 
nearly exact calculations of the VRT states can be 
performed, any discrepancy between the observed 
and calculated transition frequencies can be at- 
tributed to  possible deficiencies of the intermolecular 
potential. 

Since the anisotropy in the potential for this system 
is very weak, relative to the large rotational constant 
of the HZ subunit, we use the SF coordinates. The 
kinetic energy operator is given by eqs 2-4 with TA 
= 0 and TB = C(r)jB2, where C(r) is the rotational 
constant of HZ which depends on the H-H bond 
length r. The potential can be expanded as in eq 7; 
the expansion functions would simply be Legendre 
functions Pdcos 6,) when expressed in BF coordi- 
nates, cf.  eqs 9 and 10, but they must be transformed 
to the SF coordinates, cf. eq 8. The SF expansion 
functions are coupled products of two spherical 
h a r m o n i c ~ l ~ ~ ~ ~  which are functions of gF = 
(6,  ,4B ) - i. and ft = @,a>. Also the SF angular 
basis functions for the VRT states, cf. eq 15, are 
cpupled products of two spherical harmonics in i. and 
R. The expansion coefficients udR, r )  in the potential 
depend on the length R of the van der Waals bond, 

SF SB - 

Table 3. Calculated Energy Levels (in cm-') of the 
Ar-H2 (v = O j  = 0) and Ar-Dz (u = O j  = 0 )  Complexes 
from the ab Initio SAFT Potential 

A Y D 2  

0 0 -21.883 -28.387 -4.134" 
-27.752 -3.734" 1 1 -20.756 

2 2 -18.516 -26.484 -2.942' 
3 3 -15.188 -24.590 -1.776" 
4 4 - 10.821 -22.078 -0.260" 
5 5 -5.487 -18.962 
6 6 +0.685 -15.257 
7 7 -10.987 
8 8 -6.183 
9 9 -0.888 

10 10 +4.828 

Excited Van der Waals stretch levels. 

J 1 Ar-H2 

+ 1.571" 

Table 4. Calculated Energy Levels (in cm-l) of the 
Ar-H2 (u = O j  = 1) Complex from the ab Initio SAPT 
Potential 

1 J = l + l  J = l  J = l - 1  
0 -22.352 
1 -21.206 -19.915 -22.437 
2 -18.956 -17.677 -18.883 
3 -15.662 -14.355 -15.572 
4 - 11.246 -9.998 -11.207 
5 -5.894 -4.686 -5.868 

as well as on r. Morse-type oscillator functions4' were 
used as the basis in R, and since the potential in ref 
31 was expanded as a Taylor series in r,  the required 
integrals over the vibrational states of HZ could be 
obtained from ref 19. The elements of the kinetic 
energy matrix become extremely simple with the SF 
angular basis, the potential matrix elements are 
more complex, cf. eq 17. For atom-molecule dimers 
one can avoid the calculation of the 9 - j  symbols, 
however, by using the simplification indicated below 
eq 18. When the molecule is linear, as in this case, 
one can substitute KA = KB = 0 in the expansion of 
the potential and k~ = k~ = 0 in the basis. The 
angular factors thus appearing in these matrix 
elements are the Percival-Seaton  coefficient^.^^,^^ 

The only rigorously conserved quantum numbers 
are the total angular momentum J ,  its projection M 
on the space-fixed z axis, and the parity CJ. Because 
of the very weak anisotropy of the potential, the H2 
rotational quantum number j and the quantum 
number 1 assosiated with the end-over-end rotation 
of the vector R are nearly conserved too (coupling 
case a of ref 16). These approximate quantum 
numbers can be used to label the VRT levels. In 
Tables 3 and 4 we report results of converged 
variational calculations for the bound states of Ar- 
H2 (j = 0) and Ar-Dz (j = 01, and for Ar-Hz (j = 11, 
respectively. For details of the calculations we refer 
to ref 32. For the j  = 0 states of Ar-H2 the potential 
affords only one bound stretch state, with J = Z 
running from 0 to 5 .  By virtue of its larger mass, 
Ar-D2 has two such bound states; the second state 
corresponds to the excited van der Waals stretch. In 
t h e j  = 1 manifold of Ar-Hz there are 16 bound 
states, see Table 4. The anisotropy of the potential 
splits each (j=l,Z)-level into states with J = I - 1 , Z ,  
and 1 + 1. In Table 4 we see illustrated that these 
splittings are very small. This is not surprising in 
view of the small anisotropy in the potential. 
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Table 5. Near-Infrared Transitions in Ar-Da (in 
cm-l) Accompanying the Fundamental Band of 0-Da 
[6?1(0) = 2993.614 cm-'1 
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Table 6. Near-Infrared Transitions in Ar-Da (in 
cm-l) Accompanying the Fundamental Band of o-D2 
[S1(0) = 3166.369 cm-ll 

AE(s' - S) 
computed observed 

s' I" J' I' (ref32P (ref 117Ib Ac 
1 1 2 2 2994.117 2994.042 +0.075 
2 2 3 3 2994.728 2994.659 f0 .069 
3 3 4 4 2995.326 2995.287 +0.039 
4 4 5 5 2995.908 2995.835 +0.073 
5 5 6 6 2996.470 2996.402 +0.068 
6 6 7 7 2997.009 2996.952 +0.051 
7 7 8 8 2997.517 2997.475 +0.042 
8 8 9 9 2997.986 2997.995 $0.031 
9 9 10 10 2998.399 2998.375 +0.024 

2 2 1 1 2991.592 2991.542 +0.050 
3 3 2 2 2990.955 2990.904 +0.051 
4 4 3 3 2990.322 2990.297 $0.025 
5 5 4 4 2989.698 2989.690 +0.008 
6 6 5 5 2989.087 2989.080 +0.007 
7 7 6 6 2988.496 2988.549 -0.053 
8 8 7 7 2987.935 2987.988 -0.053 
9 9 8 8 2987.419 2987.485 -0.066 

10 10 9 9 2986.976 2987.040 -0.064 

Computed near-infrared transitions from the ab initio 
SAPT potential (ref 31). Measured near-infrared transitions 
(ref 117). Absolute error of the transition frequency computed 
from the ab initio SAFT potential. 

In the presentation of the computed transition 
frequencies we follow the spectroscopic notation 
which is common for the H2 transitions. The symbols 
Q(j) and S(j) denote Aj = 0 and Aj = 2 transitions, 
respectively, that depart from a state j .  The change 
in the vibrational quantum number is indicated by 
a subscript. For example, Ql(0) stands for a u = 
0 - 1 transition in para (evenj) hydrogen in which 
the rotational state does not change. The QJO) 
transitions probe mainly the isotropic part of the 
potential and its dependence on the diatom stretching 
distance. The levels with higherj are also perturbed 
by the anisotropic part of the potential, so that the 
QUO') and S,(j) transitions contain information about 
the anisotropy in the interaction. 

In Tables 5 and 6 we present the near-infrared 
transitions of the Ql(0) and Sl(0) spectra of Ar-Dz. 
Note that both upper states are resonances that 
undergo vibrational predissociation and that the 
second upper state also decays via internal rotation 
predissociation. The lifetimes of these compound 
resonances are so long123J24 that the associated line 
broadenings have not been observed experimentally 
and a bound state method can be safely applied. 
Table 7 gives the far-infrared transitions in the 
So(0) spectrum of Ar-D2. (Note that in ref 117 the 
assignments for the R branch of the Ql(0) spectrum 
of h - D 2  and the T branch of its Sl(0) band contain 
some typographical errors.125) An inspection of Tables 
5-7 shows that the SAPT potentia131 produces very 
accurately the transition frequencies for both the 
Ql(0) and S,(O) bands: typical errors are of the order 
of 0.1 cm-l. This very good agreement between the 
results of ab initio  calculation^^^ and high-resolution 
mea~urementsll 'J~~ suggests that not only the domi- 
nant isotropic part of the SAPT p ~ t e n t i a l , ~ ~  but also 
its dependence on the diatom stretching distance and 
the weak anisotropic term are very accurate. 

AE(s' - J') 
computed observed 

s' I" J' 1' (ref32)" (1-ef117)~ AC 

1 1 2 4 3170.335 3170.290 +0.045 
2 2 3 5 3172.221 3172.159 $0.062 
3 3 4 6 3174.038 3173.986 +0.052 
4 4 5 7 3175.790 3175.725 +0.065 
5 5 6 8 3177.470 3177.387 $0.084 
6 6 7 9 3179.059 3178.964 f0.095 
7 7 8 10 3180.525 3180.418 f0.107 
8 8 9 11 3181.797 3181.676 f0 .121 
9 9 10 12 3182.704 3182.640 $0.064 

3 3 2 0 3161.352 3161.350 $0.002 
4 4 3 1 3159.449 3159.472 -0.023 
5 5 4 2 3157.612 3157.585 +0.027 
6 6 5 3 3155.868 3155.768 +0.100 
7 7 6 4 3153.806 3153.995 -0.186 
8 8 7 5 3152.336 3152.290 +0.046 
9 9 8 6 3150.829 3150.692 +0.137 

10 10 9 7 3149.147 3149.246 -0.099 

a Computed near-infrared transitions from the ab initio 
SAPT potential (ref 3 1). Measured near-infrared transitions 
(ref 117). Absolute error of the transition frequency computed 
from the ab initio SAPT potential. 

Table 7. Far-Infrared Transitions in Ar-Da (in cm-l) 
Accompanying the 
179.069 cm-'] 

= 2 Band of o-D2 [SdO) = 

M(s' - J') 
computed observed 

s' I" S I' (ref32)" (ref121)b AC 

1 1 2 4 183.913 183.875 +0.038 
2 2 3 5 185.822 185.749 +0.073 
3 3 4 6 187.666 187.560 +0.106 
4 4 5 7 189.447 189.331 +0.116 
5 5 6 8 191.154 191.004 +0.150 
6 6 7 9 192.765 192.598 +0.167 
7 7 8 10 194.241 194.055 +0.186 
8 8 9 11 195.491 195.257 +0.234 

3 3 2 0 174.844 174.903 -0.059 
4 4 3 1 172.911 172.995 -0.084 
5 5 4 2 171.032 171.140 -0.108 
6 6 5 3 169.202 169.323 -0.121 
7 7 6 4 167.431 167.589 -0.158 
8 8 7 5 165.734 165.900 -0.166 
9 9 8 6 164.138 164.326 -0.188 

10 10 9 7 162.688 162.895 -0.207 

a Computed far-infrared transitions from the ab initio SAPT 
potential (ref 31). Measured far-infrared transitions (ref 121). 
Absolute error of the transition frequency computed from the 

ab initio SAPT potential. 

B. He-HF 
The He-HF complex is very weakly bound and 

until recently it was investigated only by scattering 
techniques.lz6Jz7 In 1990 Lovejoy and Nesbitt128 
reported the first study of the high-resolution near- 
infrared vibration-rotation spectra, corresponding to 
the simultaneous excitation of the vibration and 
rotation of HF within the He-HF complex, and of 
the rotational predissociation. 

The few dynamical calculations for this com- 
p l e ~ ~ ~ ~ - ~ ~ ~  were based on the ab initio potential of 
Rodwell et aZ.131 The most advanced of these studies 
was reported by Lovejoy and Nesbitt.128 Their cal- 
culations of bound and quasibound rovibrational 
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Figure 2. Ab initio interaction potential of He-HF 
computed by (solid line) and semiempirical poten- 
tiallzs (dashed line), for 0 = 0”, go”, 180” and r = 1.7328 
bohr. 

levels and of the line widths revealed that the ab 
initio potential131 does not correctly reproduce the 
near-infrared spectrum of the complex. Comparison 
of the experimental results with the ab initio predic- 
tions suggested that the van der Waals well in this 
potential is 11% too shallow and that its anisotropic 
terms are 30% too large in the repulsive region. This 
is not entirely surprising since the potential devel- 
oped by Rodwell et aZ. follows the “Hartree-Fock plus 
dispersion’’ and neglects important intra- 
monomer correlation effects. However, by a simple 
scaling of the long-range dispersion coefficients in 
this potential Lovejoy and Nesbitt128 were able to  
obtain an anisotropic potential surface which repro- 
duced all spectroscopic data available for He-HF. 

Recently, Moszynski et ~ 1 . ~ ~  reported a SAF’T 
calculation of the three-dimensional potential energy 
surface for the He-HF complex. This potential was 
represented by an expansion in Legendre polynomi- 
als PL(COS OB). The expansion coefficients uL(R,r), 
calculated for different values of the HF bond length 
r,  were fitted by analytic functions of R which 
represent the various long-range R-” and short-range 
(exponential) contributions. Further improvement of 
the important dispersion term was achieved by the 
computation of high-quality long-range dispersion 
coefficients at  the same level of electron correla- 
tion132-134 in a large spdfg basis set. The SAF’T 
potential surface is in very good agreement with the 
semiempirical potential of Lovejoy and Nesbitt128 (see 
Figure 2). In ref 34 the SAPT potential was checked 
by direct comparison with experiment,128 after com- 
putation of the near-infrared spectrum and line 
widths. Here, we present a brief summary of the 
VRT states and spectrum of He-HF, as calculated 
with the SAPT33 and semiempirica1128 interaction 
potentials. 

Although the He-HF interaction potential in the 
region of the van der Waals minimum is only weakly 
anisotropic, it is most convenient to use the BF 
coordinates, with the kinetic energy operator given 
by eq 5 with TA = 0 and TB = C(r)jB2. The Legendre 
expansion of the potential can be directly used in 

where i. = (OB,@B) and p is the spectroscopic parity. 
This parity is related to the conventional parity 0 

under space inversion E* as p = ~ ( - - l ) ~ . l ~ ~  The 
potential matrix elements are given by eq 18, with 
the 9 - j  symbol substituted as indicated below this 
equation and the labels k ’ ~ ,  KA, k~ and k ’ ~ ,  KB, k~ in 
the 3 - j  symbols equal to  zero. The only rigorous 
quantum numbers are the total angular momentum 
J ,  M and the parity p .  The HF rotational quantum 
numberj, and the projection K of J (andj) onto the 
body-fixed intermolecular axis, are nearly conserved 
(coupling case b of ref 16). Functions with different 
j are mixed by the anisotropic potential, functions 
with different K only by the off-diagonal Coriolis 
interactions. States with (approximately) K = 0, f l ,  
etc. are denoted as 2, II, etc. Levels with p = f l  
and p = - 1 are designed by the superscripts e and f, 
respectively. For K = 0 only e parity states exist. 
The splitting of the states with IKI > 0 (the so-called 
Z-doubling) into states with e and f parity is caused 
by the Coriolis interactions. 

The allowed dipole transitions between the VRT 
states of the complex can be deduced from the 
expressions in section 1I.E. Also the simplified 
formulas for atom-diatom systems are indicated in 
this section, as well as in ref 86. They lead to the 
following rigorous selection rules 

J” = J’, p” = -p f ,  or J‘= J f 1, p” = p f  
(42 )  

Since the quantum number K is nearly conserved, 
an additional selection rule 

(43) 

holds to a good approximation. Thus, the observed 
bands in the cold He-HF near-infrared spectrum 
correspond to the transitions from the bound 2 
states of He-HF ( u  = 0) to  2, ne, and I I f  states of 
He-HF (v = 1). In view of eq 42, two branches (P  
and R)  corresponding to  J” = J’ + 1 and s’ = J’ - 1, 
respectively, are observable for T. - and T. - ne 
bands, for the I: - nf transitions one should see only 
one CQ) branch. A schematic diagram of the energy 
levels and observed near-infrared transitions is de- 
picted in Figure 3. 

The only truly bound states in He-HF are those e 
levels which lie below the j = 0 states of the free HF, 
and since the parity must be conserved, the flevels 
which lie below t h e j  = 1 state of HF. Other states 
are either so-called “shape” or “orbiting” resonances 
which dissociate directly by tunneling through the 
centrifugal barrier, o r  Feshbach or “compound” reso- 
n a n c e ~ ~ ~  which decay via rotational predissociation. 
The latter mechanism implies that the energy of the 
rotational excitation to j = 1 is converted into 
translation energy of the dissociating fragments. Of 

R’ - R = 0,  &l 
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Table 8. Calculated Energy Levels (in cm-I) of the 
He-€IF (u = 0) and He-HF (u = 1) Complexes \ 

ne bend 
IT' bend-- 
C e  bend-4 

C s ta te  

C ground s t a t e 1  

,,r H F ( v = l , j = l )  
0:' 1 

- / j  1 

,:'I 

' I  

-9,' ' 

I I 

1, ,/ HF(v=O,j=O) 
,' I 

- - - J  

Figure 3. Schematic diagram of the rovibrational levels 
and nearinfrared transitions in He-HF, according to ref 
34. Ql(0) = 3961.4229 cm-l corresponds to the stretch 
fundamental of HF. The l-If state is located 33.9 cm-l above 
the He-HF ( u  = 1,j = 0) threshold, while the 1 doubling 
(the splitting of the ne and l-If energy levels) is 0.4 cm-l. 

course, all states of He-HF (u = 1) may undergo 
vibrational predissociation, which utilizes the HF 
vibrational energy to dissociate the He-HF (u  = 1) 
complex into He and HF (u = 0) fragments. This 
process was found to be extremely slow,128 however, 
and was ignored in ref 34. 

By contrast with Ar-Hz, the lifetimes of metastable 
states of He-HF are not negligible, and the cor- 
responding line broadenings have been measured.lZ8 
In ref 34 the positions and widths of these upper 
states have been obtained from close-coupling scat- 
tering calculations. The resonance parameters can 
be extracted from the behavior of the S matrix as a 
function of the energy. In the vicinity of a resonance 
the energy dependence of the phase shift &(E) is 
described by the Breit-Wigner function56 

where @E) is the contribution from direct scatter- 
ing and EJ and rJ are the position and the width of 
the resonance. Equation 44 is valid only in the one 
open channel case. For a generalization to situations 
with two or more open channels we refer to  ref 136. 
Note that the parameters EJ and rJ are assumed to 
be independent of the energy, i.e., that the isolated 
narrow resonance appr~ximat ion~~ is valid. This is 
expected to hold since the resonances observed for 
van der Waals molecules are usually narrow and do 
not overlap with neighboring ones. In practice, the 
following procedure136 can be applied to find the 
position and the width of a resonance. First, the 
phase shift must be computed as a function of energy 

EJ 
J ref 34" ref 128b 

ground stateC 0 -7.380 -7.347 
1 -6.608 -6.572 
2 -5.085 -5.043 
3 -2.861 -2.812 
4 -0.040 $0.011 

2 bendd,e 0 +30.684 +30.725 
1 +31.056 +31.124 
2 +32.013 +32.109 
3 $33.656 $33.776 
4 +35.982 $36.124 
5 +38.915 +39.071 

TIe benddse 1 +34.298 4-34.508 
2 $36.371 $36.565 
3 $39.120 $39.294 

IIf benddf 1 1-33.885 +34.112 
2 $35.364 $35.592 
3 +37.512 $37.736 
4 $40.2068 $40.371 

a Energy levels computed using the ab initio SAP" potential 
(ref 33). Energy levels computed using the empirical potential 
(ref 128). Energies relative to HF (u  = Oj = 0). Energies 
relative to HF (u  = l j  = 0). e Resonance states determined 
from close-coupling scattering calculations. f Bound states 
relative to HF (u  = lj = 1). Obtained from a variational 
calculation without t h e j  = 1 function in the basis. 

by solving the close-coupling scattering equations at 
a closely spaced grid of energies Ei around the 
location estimated e g .  from bound state calculations, 
subject to  standard S-matrix boundary conditions. 
The position EJ and the width rJ can then be 
obtained by fitting the computed phase shifts GJ(Ei) 
to the Breit-Wigner function.44 The direct scattering 
term &$E), which depends very weakly on the en- 
ergy, may be approximated as a linear or quadratic 
function of the energy.136 

In Table 8 we report the results of bound state and 
close-coupling  calculation^^^ of the energy levels in 
He-HF obtained from the ab initio potential energy 
surface.33 As expected, the He-HF complex is very 
weakly bound. The potential energy surface for u = 
0 supports only five bound states: the ground rovi- 
brational state (J = 0) and four rotationally excited 
levels. The energy levels computed128 from the 
semiempirical potential are also included in Table 8. 
The agreement is very good: the energies of bound 
states agree within 0.05 cm-l or better, the positions 
of the 2 resonances within 0.1 cm-l, and the posi- 
tions of the ne resonances and the energies of the nf 
states within 0.2 cm-l. The theoretical dissociation 
energy, DO = 7.38 cm-l, compares very well with the 
result obtained from the semiempirical potential, Do 
= 7.35 cm-l. 

The computed transition f r eq~enc ie s~~  correspond- 
ing to the experimentally observed128 Z - P, - ne, 
and I: - IIf bands are presented in Table 9. The 
SAPT potential surface33 predicts all infrared transi- 
tions with errors smaller than 0.1 cm-l. For com- 
parison we also report in Table 9 the transition 
frequencies computed from the semiempirical poten- 
tia1.128 In general, the ab initio SAPT potential 
reproduces the experimental data with similar ac- 
curacy as the semiempirical potential, which is fitted 
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Table 9. Near-Infrared Transitions in He-HF (in em-*) Accompanying the Fundamental Band of HF" 

transition s' S computed (ref 34)* observed (ref 128)' computed (ref 128Id A' Af 
2 - 2 0 1 3999.860 3999.953 3999.894 -0.094 -0.059 

1 2 4000.044 4000.137 4000.104 -0.093 -0.033 
2 3 4000.164 4000.251 4000.242 -0.087 -0.009 
3 4 4000.266 4000.345 4000.359 -0.079 +0.014 
4 5 4000.378 4000.449 4000.483 -0.071 +0.034 

2 - ne 0 1 4003.102 4003.161 4003.278 -0.059 $0.117 
1 2 4004.402 4004.418 4004.560 -0.016 $0.142 
2 1 4000.806 4000.904 4000.974 -0.098 $0.070 
3 2 4000.655 4000.735 4000.800 -0.080 +0.065 
4 3 4000.583 4000.639 4000.706 -0.056 $0.067 

z-nf 1 1 4001.916 4002.005 4002.107 -0.089 $0.102 
2 2 400 1.87 1 4001.952 4002.058 -0.081 +0.106 
3 3 4001.796 4001.859 4001.971 -0.063 $0.112 
4 4 4001.669 4001.680 4001.783 -0.011 $0.103 

a The frequency corresponding to the HF stretch fundamental is Ql(0) = 3961.4229 cm-l. Computed transitions from the ab 
initio SAPT potential (ref 33). Measured transitions (ref 128). Computed transitions from the empirical potential (ref 128). 
e Absolute error of the transition frequency computed from the ab initio potential. f Absolute error of the transition frequency 
computed from the empirical potential. 

to these data. Some transition frequencies are 
predicted even more accurately by the SAPT poten- 
tial. 

For dimers consisting of linear molecules, and in 
particular for an atom-diatom system (with LA = j A  
=J'A = 0) as we have here, the labels KA and KB in 
the angular expansion of the potential and the labels 
k~ and ka in the basis functions are zero. From eq 
18 it follows then that the diagonal potential matrix 
elements vanish for odd values of L = LB. This 
suggests that the energy levels and transition fre- 
quencies are mainly sensitive to  the terms with even 
L in the Legendre expansion of the intermolecular 
potential. The results reported in Table 9 confirm 
that these terms in the ab initio potential33 are 
indeed very accurate. The correctness of the (much 
smaller) terms with odd L can be checked by comput- 
ing the widths of resonances which decay via rota- 
tional predissociation. Rotational predissociation 
lifetimes can be defined via the Fermi golden rule 
expression137 which, indeed, mixes states withj  = 0 
and j = 1 via the L = 1 term in the Legendre 
expansion of the potential. Since Lovejoy and Nes- 
bitt128 measured the line widths of all Z - Ze and 
C - ne transitions in He-HF, a direct comparison 
of the computed and measured widths serves as a 
further test of the accuracy of the ab initio potential. 

In Table 10 we report the widths of the 2 and ne 
resonances computed on the ab initio potential. The 
agreement here is less satisfactory: all computed 
widths are too large by a factor of 2. This suggests 
that the small L = 1 anisotropy in the ab initio 
potential is not correct. To confirm this assumption, 
the short-range contribution to  the L = 1 angular 
component of the potential was scaled by a factor of 
0.95 and the widths of the 2 and ne resonances were 
recomputed. The results are given in parentheses 
in Table 10. The agreement with the measured line 
widths128 is very good now: almost all widths com- 
puted from the scaled potential agree with the 
experimental data within the error bars. Also the 
agreement with the widths computed from the 
semiempirical potential128 is very satisfactory. It 
should be noted that this scaling introduces a very 

Table 10. Calculated Widths (MHz) of the He-HF 
Resonance States" 

computed observed computed 
J (ref34Ib (ref 128Y (ref 128Id 

2 bend 1 7203 (3452) 3020 & 500 3550 
2 5731 (2673) 2830 f 200 2730 
3 4453 (2001) 1640 & 150 1999 
4 3280 (1397) 1260 & 100 1349 
5 2158(848) 770 f 100 780 

nebend 1 1080(575) 530 f 100 532 
2 1773(928) 890 & 150 900 
3 1930 (993) 1000 & 400 990 

a The widths corresponding to the scaled potential are given 
in parentheses. Line widths computed using the ab initio 
SAPT potential (ref 33). Measured line widths (ref 128). 

Line widths computed using the empirical potential (ref 128). 
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resonances are extremely sensitive to  the accuracy 
of the small odd terms. The quantitative prediction 
of the rotational predissociation lifetimes is a chal- 
lenge for ab initio calculations. 

C. Ar-NH3 and Ar-H20 
A considerable amount of high-resolution spectral 

data is available for both Ar-NH3138-146 and Ar- 
H2043,44J46-150 in the infrared, far-infrared, and mi- 
crowave regions. Also the isotopomers Ar-D20 and 
Ar-HDO have been investigated. Ab initio poten- 
tials have been calculated for both dimers by the 
supermolecule MBPT2 method (second-order many- 
body perturbation t h e ~ r y ) , l ~ l J ~ ~  as well as by an 
approximate SAPT a p p r ~ a c h . ' ~ ~ J ~ ~  The super- 
molecule r e s ~ l t s ~ ~ ' J ~ ~  can only be used for comparison 
with other ab initio or semiempirical potentials. 
They cannot be tested in calculations of the VRT 
states and spectra, since they did not represent 
complete potential surfaces, but only some specific 
cuts. The perturbational a p p r ~ a c h l ~ ~ J ~ ~  used large 
(spdfg) basis sets and it did produce complete inter- 
molecular potential surfaces. For Ar-NH3 the NH3 
umbrella angle was varied too. The potential was 
represented as the sum of electrostatic, first-order 
exchange, induction, and dispersion interactions. The 
electrostatic and first-order exchange interaction was 
defined by the well-known Heitler-London formula 
(neglecting intramonomer correlation effects), while 
the second-order induction and dispersion interac- 
tions were calculated as damped multipole expan- 
sions. Tang-T~ennies-type~~ damping functions were 
used to correct the second-order interactions for 
overlap effects; the damping parameters in these 
functions were derived from the exponential fits of 
the first-order exchange repulsion in the Heitler- 
London energy. The permanent multipole moments 
of the monomers were obtained from SCF calcula- 
tions, while their static- and frequency-dependent 
polarizabilities were computed by the time-dependent 
coupled Hartree-Fock (TDCHF) method, followed by 
second-order many-body perturbation theory (MBPT) 
to account for the effects of (true) electron correla- 
t i ~ n . l ~ ~  Alternative calculations156 were performed 
for Ar-H20 by the "Hartree-Fock plus damped 
dispersion'' approach, with the same basis. The 
resulting potential differed only slightly from the 
perturbational result. The calculations were per- 
formed on a Gauss-Legendre quadrature grid37 of 
angles OB and Gauss-Chebyshev grid of angles V B ,  
so that the anisotropy of the potential could be 
expanded in spherical harmonics, cf.  eq 10, and the 
coefficients ULSJR) in the expansion could be directly 
obtained by numerical integration, cf. eq 11. Analytic 
fits were made of the short-range (exponential) 
contributions to  these coefficients. The different 
long-range R-" terms were given automatically in the 
spherical expansion.35 The results for Ar-NH3 are 
shown in Figure 5 .  

In the paper on Ar-H20154 it was shown how to 
transform the anisotropic potential to Ar-D20, i.e. 
how to correct for the shift of the monomer center of 
mass. The long-range contributions can be trans- 
formed analytically, a numerical transformation pro- 
cedure was described for the short-range terms. If 
also the principal inertia axes of a monomer are 
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Figure 5. Coefficients vl,(R) in the expansion (without 
the scaling in v3,3) of the ab initio Ar-NH3 interaction 
potentiall53 in functions Sl,(e,q). These functions are 
normalized real combinations of spherical harmonics 
pm(O,q), which differ from the angular functions in eq 10 
only by normalization. 

rotated by isotope substitution, as in Ar-HDO, it is 
possible to  transform the potential by the use of the 
well-known rotation properties of spherical harmon- 
i c ~ . ~ ~  Or, alternatively, one may retain the off- 
diagonal components of the inertia tensor in the 
kinetic energy expression. 

The calculation of the VRT states and spectra for 
Ar-NH3 from the ab initio potential153 was described 
in refs 7-9. Similar calculations were performed for 
Ar-HzO, Ar-D20, and It  was most 
convenient to use the BF coordinates with the kinetic 
energy expressed as in eq 5 with TA = 0, the potential 
expanded as in eq 10 and the basis of eq 16 With& 
= mA = k A  = 0. The inclusion of the monomer 
umbrella angle 0 I Q I n as a dynamical variable in 
Ar-NH3 can be based on the existing theory for NH3.3 
The principal moments of inertia, which are the 
inverse of the rotational constants (times h2/2) in the 
kinetic energy TB of the NH3 monomer are given by 

(45) 

where mH and mN are the masses of hydrogen and 
nitrogen, 5 = m ~ / ( 3 m ~  + mN), and ro is the (fixed) 
N-H bond length. The kinetic energy associated 
with the curvilinear umbrella motion is given by the 
Podolsky14 expression 
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with 

lee(@) = 3mHri(cos2 g + 5 sin2 g) (47) 
and, since the G(= 1) tensor is diagonal (there is no 
Coriolis coupling, because the 3-fold symmetry is 
conserved159) 

.de) = IX&JJZ& (48) 
Also the well-known3 double-well potential V m b ( @ )  for 
the umbrella motion in the NH3 monomer has to  be 
included in the Hamiltonian, and the expansion 
coefficients ULBKJR) of the intermolecular potential 
become dependent on g. A convenient numerical 
basis or contracted basis of analytic functions 
sin(me) can be obtained by first diagonalizing the 
monomer Hamiltonian H u m b ( g )  = Tumb(@) + vumb(@). 

The v2 vibrational ground state 0' is split by 23.8 
GHz = 0.793 cm-l by tunneling through the NH3 
inversion barrier,160 and the first excited 1* state 
splits by 35.8 cm-l. Since the v2 fundamental fre- 
quency is about 950 cm-l, the inclusion of other than 
the 0' basis functions in the calculation of the VRT 
states has very little e f f e ~ t . ~  In the calculation of the 
mid-infrared s p e ~ t r u m ~ ~ ~ J ~ ~  of Ar-NH3, which cor- 
responds to excitation of the v2 mode, the 1* functions 
must be taken into account. Note, incidentally, that 
the simple basis functions sin(me) are not orthogonal, 
since the volume element is g(g)lI2 dg. 

The consideration of permutation inversion sym- 
metry is important in these dimers. For Ar-H20 the 
feasible symmetry operations are (12), the inter- 
change of the two protons, and space inversion, E*. 
The PI group is isomorphic with the point group CzV 
and it may be designated as PI(C2,). The VRT states 
of Ar-HzO with A1 and A2 symmetry correspond to 
p-HzO, states with 231 and B2 symmetry to o-H~O. 
Transitions within each dimer species are observed 
in the spectrum in the weight ratiopara:ortho = 1:3. 
Since deuterons are bosons, while protons are 
fermions, the ortho-para classification of the VRT 
states is reversed in Ar-D20; the weight ratio is 
ortho:para = 6:3. For Ar-NH3 the symmetry group 
is PI(C3,) if the NH3 umbrella is considered to be 
frozen and PI(D3h) if the umbrella inversion is 
included; see Appendix C. VRT states with A'I and 
A"1 symmetry are Pauli-forbidden; states with A2 
and A 2  symmetry correspond to o-NH3 and states 
with E and E" symmetry to p-NH3. The observed 
spectra are superpositions in the ratio ortho:para = 
4:2. 

In Figures 6 and 7 we illustrate how the rotor 
states of NH3, with energies Aj(j + 1) + (C - A)K2, 
which are (2)' + 1)-fold degenerate in the free mono- 
mer, are split by the anisotropic potential in Ar-NH3. 
We observe that the terms with (LB&B) = (1 ,O) and 
(3,3) are the dominant anisotropic interaction terms. 
States with different j and h are mixed by these 
interactions, but the symmetry restrictions tell us 
that the ortho states with K = 0 (mod 3) must remain 
separate from the para states with k = f l  (mod 3). 
It is typical for a van der Waals complex that the 
states with different ortholpara symmetry display a 
completely different VRT level scheme, although they 
feel the same interaction potential. For normal, 
nearly rigid molecules such differences are usually 
not visible in vibrational spectra, only in rotational 
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Figure 6. Calculated and experimental VRT levels (band 
origins) of 0-Ar-NH3. The leftmost column is obtained 
from the isotropic potential uo,o(R); j and k are exact 
quantum numbers a t  this level, us is the R stretch quantum 
number. The second column shows the effect of the 
ul,o(R) term; the third column, the cumulative effect of the 
(scaled) u3,3(R) term; the fourth column, the effect of the 
remaining anisotropic interactions. The quantum number 
IKl is approximate. The fifth column includes the inver- 
sion-tunneling splittings, and the last column contains the 
experimental frequencies from refs 141, 142, 144, and 146. 
The dashed levels in the inversion doublets are Pauli 
forbidden. The arrows indicate the calculated and mea- 
sured transitions, with the ground level adjusted. 

-50 4 para NH3-Ar  

H 
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V o o  + V l 0  + V 3 3  full V +Inv e x p .  

Figure 7. Calculated and experimental VRT levels of 
p-Ar-NH3. See the caption of Figure 6 for the explanation. 
The inversion splitting of the IKI = 1 levels is so small that 
it is not visible here. 

ones. We also observe in these figures that the K 
label in the BF basis (i.e. the projection o f j  and J o n  
the dimer axis) remains a nearly good quantum 
number. Although this is formally justified only for 
atom-linear molecule dimers, states with K = 0 are 
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often called 2 states, and states with IKI = 1 are n 
states. The I: states in Ar-NH3 are split by the NH3 
inversion tunneling by almost the same amount as 
in free NH3. The ll states are split only by minute 
amounts; if they were not mixed with the I: states 
through the weak Coriolis coupling they would not 
split at  all. This can be understood from the model 
in ref 8, which treats the effect of the NH3 umbrella 
inversion as a (first-order) perturbation on the VRT 
states. 

The VRT levels in Ar-NH3 have been calculated 
for J = 0, 1, ..., 15 and, with the aid of the theory in 
section II.E, also the intensities of all the allowed 
transitions from the ground state in the ortho and 
para species have been computed.s The applied 
dipole surface contains the permanent dipole of NH3 
and the dipole induced on Ar by the NH3 permanent 
dipole and quadrupole, cf. eq 40 and Table 2. The 
induced dipole contributes only about 10% to the 
intensities, however. Also the 14N nuclear quadru- 
pole splittings have been computed for the different 
VRT states. Some generated spectras are shown in 
Figure 8, parts A-C. The intensity ratios between 
the P, Q, and R branches in Figure 8, parts A and B, 
are mostly determined by the Honl-London fac- 
t o r ~ , ~ ~ ~  but in Figure 8C they show a typical deviation 
from these factors. This was found in the experi- 
ment142 also. It turned out, however, that the fre- 
quencies of the bands resulting from the ab initio 
potential153 deviate rather strongly from the mea- 
sured f r e q u e n c i e ~ . l ~ ~ - I ~ ~  The van der Waals stretch 
frequency which probes the R dependence of (mainly) 
the isotropic potential was quite realistic, but the 
“bending” frequencies which correspond to the level 
splittings by the anisotropic potential, cf .  Figures 6 
and 7, were completely wrong. Even the order of 
these hindered rotor levels was incorrect. A simple 
scaling by a factor of 1.43 of the short-range contri- 
bution to the anisotropic expansion coefficient 
u3,3(R) produced nearly correct splittings; see Figures 
6 and 7. Also the calculated intensities (which could 
only be measured rather crudely142) and quadrupole 
splittings agree well with experiment then. 

Something similar was experienced for Ar-H20 
and Ar-D20: the order of the hindered rotor levels 
from the ab initio potential154 was incorrect.158 Here, 
it was not so easy to obtain the correct splittings, 
however, since many different anisotropic terms in 
the potential appeared to contribute to  these split- 
tings. Several anisotropic coefficients U L ~ J R )  change 
sign, just in the range of R where they are probed, 
i.e. in the well of the isotropic potential uo,o(R). We 
may conclude that, indeed, the spectra probe the 
anisotropy of the potential surface very sensitively. 
The accurate ab initio prediction of this anisotropy, 
especially for Ar-H20, is a great challenge. Neither 
the supermolecule MBPTB m e t h ~ d , l ~ l J ~ ~  nor the 
approximate SAPT,153J54 nor the “Hartree-Fock plus 
damped dispersion’’ can meet this challenge. 
We have seen in sections 1II.A and III.B, however, 
that considerably more accurate ab initio potentials 
are now becoming available for atom-diatom sys- 
tems, both from a more rigorous version of SAFT31p33 
and from supermolecule MBPT4 calculations.161 It 
will not take much longer before we will see full ab 
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Figure 8. Rovibrational spectra calculated for (A) the 
lowest X - ll transition in o-Ar-NHa and (B) the lowest X - ll and (C) ll - ll transitions in p-Ar-NHs from ref 8. 
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windows in the last two figures contain the spectra for the 
allowed E - E transitions between inversion doublets. 

initio potentials of similar accuracy for atom-poly- 
atom systems such as Ar-H20 and Ar-NH3. 
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Table 11. State-to-State Cross Sections do; - j ; )  for 
O - A r - N H 3  (in k) at a Collision Energy of 280 cm-’ 

scaled ab initio semi-empirical 
potential potential 

j i  (ref 8) experiment (ref 145) experiment 

2; 9.65 (9.63) 5.01 4.59 (5.28) 6.16 

4; 0.33 (0.47) 0.36 0.13 (0.19) 0.44 
33’ 1.18 (1.67) 2.56 0.22 (1.06) 3.15 
33 6.78 (6.50) 9.10 13.79 (13.24) 11.19 
43 0.80 (0.81) 4.29 7.19 (6.75) 5.28 

53’ 0.08 (0.09) 0.04 (0.06) 
53 0.10 (0.14) 0.30 (0.29) 

Qb 54% 23% 

The values given in parentheses are corrected for the 
imperfect initial state preparation; the 0; ground state is 
contaminated with 8% of the 1; state. Since the measure- 
ment provides only relative cross sections, the sum of the 
experimental values has been “normalized to  the sum of the 
corresponding calculated values. The error is defined as Q = 

- u~exper,i)2~r~~xper,l11’2,  where the values of ucalc are 
those given in parentheses. For a collision energy of 485 cm-1 
the error is 55% for the scaled ab initio potential and 31% for 
the semiempirical potential. 

1; 9.14 (5.83) 4.51 10.21 (5.94) 5.55 

3; 3.21 (3.26) 1.63 2.14 (2.05) 2.01 

4; 0.17 (0.26) 0.97 0.09 (0.46) 1.19 

Rather soon after the measurement of the high- 
resolution spectra, one tried to extract intermolecular 
potentials directly from these spectra. At first, this 
was restricted to an effective angular potential 
surface (see refs 150 and 162 for Ar-H20 and refs 
142 and 144 for Ar-NH3) which yields information 
about the anisotropy of the potential, without speci- 
fying at  which (in fact, variable) value of R this 
anisotropy was probed. Cohen and Saykallv3 were 
the first to  obtain a full three-dimensional intermo- 
lecular surface for Ar-H20. This surface was im- 
proved44 when more spectral data became available. 
A similar semiempirical potential surface was re- 
cently con~t ruc ted l~~ for Ar-NH3. The potentials 
used are of the form of eqs 13 and 14; the long-range 
coefficients C ,  were partly fixed at the a b  initio 
va1ues,133J53J54 and typically, about 10 nonlinear 
parameters were varied. The VRT levels were cal- 
culated by the collocation method (see section 1I.D) 
and the parameters were optimized by a nonlinear 
least-squares fit to  the observed transition frequen- 
cies. 

For Ar-NH3 a very effective, independent test of 
the accuracy of the intermolecular potential was 
applied. A state-selected crossed-beam experimenP3 
has provided the cross sections for the inelastic 
collisions in which the rotational ( j , k )  and the um- 
brella inversion E = f states of NH3 are changed by 
the anisotropic interaction with the Ar atoms. These 
scattering cross sections 00’; - j’i,) could be calcu- 
lated in a full close-coupling ca1c~lation.l~~ Both the 
experiments and the scattering calculations were 
performed foro-  andp-NH3, at  two different collision 
energies (280 and 485 cm-l). The results obtained 
from the scaled a b  initio potential8 and from the 
semiempirical potential of Schmuttenmaer et aZ.145 
are given in Tables 11 and 12, for o- andp-NH3. We 
observe that the scaled a b  initio potential, as well 
as the semiempirical potential yield very realistic 

Table 12. State-to-State Cross Sections dl; - j ; )  for 
p-Ar-NH3 (in &) at a Collision Energy of 280 cm-l 

scaled ab initio semiempirical 
potential potential 

(ref 8) experiment (ref 145) experiment 
2; 4.71 (4.83) 4.51 8.13 (7.95) 5.14 
2: 7.02 (6.91) 6.06 4.47 (4.65) 6.91 
3: 1.82 (1.84) 0.85 1.69 (1.64) 0.97 
3; 2.19 (2.17) 1.30 0.76 (0.80) 1.48 
4; 0.63 (0.60) 0.30 (0.29) 
4: 0.09 (0.12) 0.01 (0.03) 
2; 0.96 (1.51) 1.14 0.07 (0.71) 1.30 
2; 11.97 (11.42) 12.40 12.88 (12.24) 14.13 

3; 2.03 (2.08) 2.45 1.12 (1.43) 2.79 
4, 0.60 (0.58) 0.93 0.78 (0.77) 1.06 
4; 0.35 (0.36) 0.69 (0.69) 
52’ 0.12 (0.11) 0.04 (0.04) 
5, 0.01 (0.02) 0.04 (0.04) 
4; 0.74 (0.75) 0.77 1.08 (1.14) 0.88 
4: 0.91 (0.90) 2.33 2.24 (2.18) 2.66 
5: 0.33 (0.32) 0.43 0.96 (0.92) 0.49 
54 0.10 (0.11) 0.07 (0.12) 
55’ 0.20 (0.20) 0.08 (0.10) 
5; 0.21 (0.21) 0.56 (0.53) 

Qb 16% 32% 
“The values given in parentheses are corrected for the 

imperfect initial state preparation; the 1; state is contami- 
nated with 5% of the 1: state. The normalization of the 
experimental values and the error Q are defined in Table 11. 

For a collision energy of 485 cm-l the error is 36% for the 
scaled ab initio potential and 19% for the semiempirical 
potential. 

3; 3.01 (2.96) 3.10 7.22 (6.91) 3.53 

values of the inelastic scattering cross sections. 
Without the scaling of the anisotropic ~3,3(R) term, 
the cross sections from the a b  initio potential were 
considerably worse. Especially in the case of the 
semiempirical potential obtained from the spectra, 
the agreement with the measured scattering cross 
sections begins to  approach the (estimated) experi- 
mental accuracy. Hence, we are justified to  believe 
that the semiempirical potential for Ar-NH3145 and 
also the one for A ~ - H z O , ~ ~  are rather accurate. 

D. Ar-Benzene 
Although the VRT states of Ar-benzene and Ar- 

tetrazine have been calculated51 by the same ap- 
proach as described for Ar-HzO and Ar-NH3 in the 
preceding section, this approach proved to  be rather 
inefficient. The expansion of the (empirical) inter- 
molecular potential in spherical harmonics required 
very high values of L (up to 36) and the angular basis 
had to contain Wigner D functions with values of j 
up to  27. A different embedding of the BF frame (in 
the molecule rather than along the intermolecular 
axis, see Appendix A.3) and a different choice of 
coordinates (the Cartesian components of the vector 
R, rather than the polar coordinates R,6J,q5) have been 
proposed.23 The kinetic energy for these coordinates 
is given by eqs 6 and 19. This approach can be easily 
applied to even larger atom-aromatic molecule 
dimers, such as Ar - f l~o rene~~  and Ar-naphtha- 
lene.52 Different basis sets, harmonic oscillator hnc- 
ti on^,^^,^^ distributed G a u ~ s i a n s , ~ ~ ~  and discrete vari- 
able representations (DVR),52 have been implemented 
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Table 13. van der Waals Vibrational Energies and Properties of Ar-Cfi Calculated with the “Global” Fit of the 
ab initio Potential (ref 175) for J = 0” 
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band origin (cm-l) 
O.OOb 

25.52 
37.51 
49.12 
54.89 
58.27 
70.72 
71.08 
71.20 

(2) (A, 
3.608 
3.622 
3.655 
3.632 
3.660 
3.654 
3.637 
3.638 
3.686 

Ax (A) 
0.348 
0.364 
0.515 
0.662 
0.564 
0.493 
0.799 
0.794 
0.687 

AY (A) 
0.348 - 0.63lC 
0.515 - 0.659” 
0.564 - 0.85P 
0.799 
0.794 
0.687 

A2 (A, 
0.121 
0.123 
0.179 
0.126 
0.173 
0.168 
0.130 
0.129 
0.212 

(ZJ (h) 
0.0 

0.0 

0.0 

0.0 
0.0 
0.0 

10.999997 

f 1,999936 

f0.999945 

moded character 
ground state 
b l  
~‘(43% b2) 
b2 
b2(48% s) 
sibi  
b3 
b3 
~ ~ ( 5 7 %  b2) 

a Equilibrium distance Re = 3.560 A, well depth De = 393.44 cm-l. The root mean square displacements are defined as Ax = 
[ (x2)  - ( x ) ~ ] ~ ’ ~ ,  etc. DO = 342.47 cm-l. These numbers are interchanged for the other substate in the degenerate pair. sn* and 
bnb indicate the excitation level in stretch and bend, as determined from the eigenvectors. 

in computer programs. Other dimers for which 
experimental spectra needed interpretation, such as 

Ar-styrene and Ar-4-fl~orostyrene,’~~ 
and Ar-2,3-dimethylnaphthalene166 have been stud- 
ied too, but we will further concentrate on the 
prototype system Ar-benzene. 

The UV spectrum of Ar-benzene has been recorded 
in such high r e s o l ~ t i o n l ~ ~ - ~ ~ ~  that the rotational 
structure in this spectrum could be well resolved. It 
corresponds to the excitation of the benzene monomer 
to its lowest excited electronic singlet SI state. The 
pure SO - S1 transition is dipole forbidden, however. 
The (strong) transition which is actually observed is 
the vibronic 6; transition from the ground SO state 
to  the S1 state with the Y6 vibration excited simul- 
taneously. For Ar-benzene, formed in a cold mo- 
lecular beam, three different van der Waals transi- 
tions were observed, in combination with the 6; 
transition. Two of these bands, at  relative frequen- 
cies of 40.1 and 62.9 cm-l, had essentially the same 
rotational structure as the pure 6; transition. So, 
the excited VRT states should have A1 symmetry, just 
as the ground state, and these transitions were 
assigned170 to the R stretch fundamental, sl, and 
overtone, s2. This implies a very strong anharmo- 
nicity. The third band, at  31.2 cm-l, has a different 
rotational structure and was tentatively assigned to 
the bending overtone b2, which has components ofAl 
and E2 symmetry. The observed rotational structure 
of this band could not be understood, though. Fur- 
ther information is available from the microwave 

which yields the ground state rotational 
constants, and from stimulated Raman scattering173 
which shows an unresolved band at  about 33 cm-l. 
It followed from the experimental setup that this 
band corresponds to the same transition, in the SO 
ground state, as the transition at  31.2 cm-I in the 
excited 6l state. 

An ab initio potential surface for Ar-benzene was 
available from supermolecule MBF’TB calculations. 174 

Another unsolved problem was that the well depth 
in this potential was 429 cm-l, while the anharmo- 
nicity in the assigned s1 and s2 frequencies would not 
allow a well depth greater than about 150 cm-l. Two 
different analytic representations were made of this 
ab initio p0tentia1.l~~ The first is a “global” fit by an 
atom-atom potential of generalized Lennard-Jones 
type 

the second is an expansion in displacements d,, dy, 
d, about the minimum at Re = ( x e j e , z e )  = (O,O&) 

V(d)  = k,(d: + d t )  + k,,w2 + kuczw(dx2 + dy2) - 
De (50) 

with a “Morse-type” scaling applied to the z coordi- 
nate: w = 1 - exp(-ad,). Given these ab initio 
potentials and the unsolved questions regarding the 
interpretation of the experimental high-resolution 
spectrum, it was worthwhile to  undertake a calcula- 
tion of the VRT states of h-benzene and to study 
the symmetry-allowed transitions. Such calculations 
were made by Bludsky et by van der A ~ o i r d , ~ ~  
and by Faeder.165 Different numerical and analytic 
bases were used, and the results of Faeder agree very 
well with those of van der Avoird. The results of 
Bludsky et aZ. are different, however, although they 
used the same potential and kinetic energy expres- 
sion. The energies and some characteristics of the 
VRT states are listed in Tables 13 and 14. The two 
different analytic fits of the same ab initio potential 
produce somewhat different results. Especially those 
from the “Morse-type” expansion agree well with the 
experimental frequencies, if one makes the assign- 
ment24 that the band observed at 40.1 cm-I indeed 
corresponds to the A1 stretch fundamental sl, but that 
the band at  62.9 cm-l corresponds to the A1 compo- 
nent of the bending overtone b2 and the band at 31.2 
cm-l to  the bending fundamental bl of E1 symmetry. 
Although the s1 and b2 frequencies are rather differ- 
ent, there is strong mixing (Fermi resonance) be- 
tween these modes; see also Figures 9 and 10. It 
must be noted here that the calculations were per- 
formed on the ground state potential, whereas the 
experimental spectra probe the intermolecular po- 
tential of the vibronically excited 6l state. It can be 
inferred from the observed rotational constants and 
from the relatively small red shift of the 6; band in 
Ar-benzene (with respect to  the benzene monomer) 
that the intermolecular potential is not strongly 
altered upon 6; excitation. 
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Table 14. van der Waals Vibrational Energies and Properties of Ar-CeHs Calculated with the "Morse-type" Fit of 
the ab Initio Potential (ref 175) for J = 0 (Equilibrium Distance Re = 3.553 Well Depth De = 425.00 cm-l) 

' - 
\ 

\ - 
/ 

- 

PI(CSJ irrep band origin (cm-') (2)  (A) Ax (A) Ay (A) Az (A) (Iz) (h) modec character 
Ai 0.00" 3.594 0.320 0.320 0.121 0.0 ground state 
Ei 30.17 3.605 0.321 - 0.557b 0.123 k1.0 b' 
Ai 41.03 3.651 0.385 0.385 0.197 0.0 si (18% b2)  
E2 60.35 3.617 0.560 - O.56Ob 0.125 zt2.0 b2 
Ai 64.39 3.627 0.519 
E1 68.45 3.660 0.370 - 0.642b 0.194 11.0 s'bl 
Ai 79.35 3.710 0.451 0.451 0.254 0.0 s2 (21% b2) 
Bi 90.50 3.629 0.651 0.651 0.127 0.0 b3 
Bz 90.50 3.629 0.651 0.651 0.127 0.0 b3 

0.519 0.147 0.0 b2 (22% s) 

a DO = 371.48 cm-l. These numbers are interchanged for the other substate in the degenerate pair. s n s  and bnb indicate the 
excitation level in stretch and bend, as determined from the eigenvectors. 
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Figure 9. Fundamental stretch excited wave function of 
Ar-benzene calculatedz4 from the "global" fit of the ab 
initio potential175 for J = 0 (coordinates in A). Observe 
that the nodal plane is not horizontal, because of the Fermi 
resonance with the wave function in Figure 10. 
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Figure 10. Bending overtone wave function of Ar- 
benzene calculatedz4 from the "global" fit of the ab initio 
potential175 for J = 0 (coordinates in A). 

For an analysis of the experimental spectrum it is 
very important to  use the symmetry and to include 
the vibronic 6; excitation in the selection rules. The 
symmetry group of the nearly rigid benzene monomer 
is isomorphic to  the point group D6h. If the Ar atom 
would be delocalized to both sides of this planar 

molecule, the PI group of Ar-benzene would also be 
PI(&). Since it appears to  be localized on one side, 
with no observable tunneling to the other side, the 
feasible symmetry group is PI(c6"). The symmetry 
of the VRT states for J = 0 is indicated already in 
Tables 13 and 14. It can easily be derived if one 
realizes that the relative motions of the Ar atom are 
nearly isotropic in x and y (the first anisotropic terms 
are of order 6). The states of a two-dimensional 
isotropic (harmonic) oscillator can be characterized 
by the label I, which is the eigenvalue of the vibra- 
tional angular momentum operator 1,. As we observe 
in Tables 13 and 14, this vibrational angular mo- 
mentum is nearly unquenched in Ar-benzene, and 
the symmetry of the VRT states follows directly from 
Table 15. Also the symmetry of the rotational wave 
functions is given in this table. One should realize 
that Ar-benzene is a prolate symmetric top, with the 
quantum number K broken only by weak Coriolis 
coupling. Further, it is important to observe that the 
vibronically excited 6l state has E1 symmetry, while 
the ground SO state has A1 symmetry, of course. The 
dipole moment operator has Az symmetry, when 
expressed with respect to  the SF frame (it is invari- 
ant under all permutations and antisymmetric under 
space inversion). With the use of eq 38 it can be 
expressed with respect to  the BF frame. Its "inter- 
nal" components have A1 symmetry (the parallel 
component with k = 0) and El symmetry (the 
perpendicular components with k = f l )  and the 
corresponding rotation functions (the Wigner D func- 
tions) have A2 and El symmetry, respectively. 

All the appropriate selection rules can be derived 
then, and it follows that the assigned transitions are 
indeed allowed. Still, it was expected that the 
transition to the b l  state of E1 symmetry would be 
extremely weak, since it is forbidden by the Frank- 
Condon principle (ref 176, p 149). This principle is 
based on the assumption that the electronic transi- 
tion dipole moment does not depend on the nuclear 
displacements and, hence, that simultaneous vibra- 
tional excitations are allowed only when the excited 
vibrational state has A1 symmetry. We shall return 
to this point below. First, we note that it was 
possible to  explain the complete rotational structure 
of the band at 31.2 cm-l based on the assignment of 
ref 24. Apart from the selection rules, one has to take 
into account that the VRT levels are split by first and 
higher order Coriolis coupling between the vibronic 
angular momentum of the monomer 6l state (remem- 
ber that this state is degenerate with E1 symmetry), 
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Table 15. Symmetry-Adapted Rotational and Vibrational States of Ar-Benzene 
PI(Csu) irrep statistical weight” rotor state K (mod 6) vibrational state Ins,nb,Z) I (mod 6) 

Ai 10 IJ$M + (-YIJ,-KM 0 IO + 1-0 0 
A2 10 IJ&M - (-YIJ,-KM 0 
E1 22 I J&M 
E2 18 I J$M 
Bi 14 IJ$M - (-YIJ,-KM 3 IO + 1-0 3 
Bz 14 IJ$M + (-YIJ,-KM 3 IO - 1-0 3 

0 
f l  
k2 

1:; - f l  
k2 to 

a For the complete rovibrational states. 

C6Hs - Ar 6’0 b’o 

vo = 38 61 6.235 (8) cm-‘ ! / I  experimental 
Av = +31.164cm-’ 

I 
I / f I  I I I ’ I I ’ ”  

-40 -20 0 20 Av [GHz] 

Figure 11. Measured170 and calculated177 rotational structure of the Ar-benzene band at (relative) frequency 31.2 cm-’, 
assigned24 to the bending fundamental. The ground-state rotational constants A = 0.0948 809 cm-l and B = 0.0394 025 76 
cm-l were taken from microwave measurements,172 and the bl excited state rotational constants A’ = 0.091 583 cm-l, B‘ 
= 0.039 222 cm-l, and the Coriolis splitting constant 5‘ = 0.7987 were fitted to the experimental spectrum, with the ab 
initio value 5‘ = 0.79724 taken as starting value. 

the vibrational angular momentum of the bl state of 
E1 symmetry and the overall rotations (labeled by 
J&,M). Calculations of the VRT states have recently 
been performed177 for different J ,  in which the 
coupling to the vibronic angular momentum of the 
benzene 6l state was explicitly included. The perfect 
agreement with the observed rotational structure of 
the band at 31.2 cm-l (see Figure 11) confirms 
without doubt that the assignment of this band to 
the (parallel) 6ib1 transition must be correct. The 
fact that this band, in spite of the Frank-Condon 
principle, has an appreciable intensity, shows that 
the vibronic 6; transition dipole moment in benzene 
is influenced rather strongly by the interaction with 
the Ar atom. More generally, it might be learned 
from this conclusion that the applicability of such 
principles, which are usually based on the experience 
with “normal” nearly rigid molecules, must be recon- 
sidered in van der Waals molecules with their large 
amplitude motions. 

Additional calculations were performed177 for the 
fully deuterated species Ar-CsDs. These calculations 
reproduce the observed isotope shifts in the van der 
Waals frequencies.170 The observed change in the 
relative intensities of the s1 and b2 bands can be 
understood from the calculated change in the extent 
of Fermi resonance between these modes. Note that 
the b2 overtone steals intensity from the s1 funda- 
mental through this resonance. This is a further 

confirmation of the assignment proposed in ref 24. 
Finally, let us mention that, also via calculations of 
the VRT levels, an empirical potential has been 
fitted178 to the spectra. This potential is, rather 
crudely, represented by a simplified atom-atom 
model which omits the hydrogens, but the param- 
eters in this model have been optimized such that 
the measured vibrational frequencies are reproduced. 
The well depth in the optimized empirical potential 
is about 400 cm-l, just as in the ab initio potential. 
Collecting all these experiences, we think that the 
latter is of fairly good quality. The local “Morse 
-type” expansion is better in representing the vibra- 
tional frequencies, but it lacks some of the anhar- 
monicity, which in the “global” fit gives rise to  
additional splittings and shifts and to a slight break- 
ing of the cylindrical symmetry in the ( Z J )  directions. 

E. NHB-NH~ 
It is a fact, well-established t h e ~ r e t i c a l l f l ’ ~ ~ - ~ ~ ~  and 

e ~ p e r i m e n t a l l y , 6 J ~ ~ - ~ ~ ~  that the dimers (HF)2 and 
(Hz0)2 have a hydrogen-bonded structure. Until 
1985 it was generally believed that the ammonia 
dimer, too, had a “classical” hydrogen-bonded struc- 
ture with a proton of one monomer pointing to the 
nitrogen lone pair of the other. In that year Nelson, 
Fraser, and K.lempererlg3 interpreted their micro- 
wave spectra by assuming that the dimer has a 
nearly cyclic structure in which the two umbrellas 
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are almost antiparallel. This finding was surprising 
in view of the fact that most ab initio calcula- 
tionslg4Jg5 predicted the classical, nearly linear, 
hydrogen-bonded structure. Although the calcula- 
tions by Sagarik, Ahlrichs, and Brodelg6 seemed to 
support the nearly cyclic structure, it was convinc- 
ingly argued laterlg7 that a slight bending of the 
linear hydrogen bond in these calculations would 
have favored the classical hydrogen-bonded struc- 
ture. And, in fact, it was shown in ref 10 that the 
analytical model potential which Sagarik et aZ. fitted 
to  their ab initio data indeed supports a slightly bent 
hydrogen-bonded structure as the most stable one. 
Two of the most recent calculations differ in the 
prediction of the equilibrium structure: Hassett, 
Marsden, and Smithlg7 found a hydrogen-bonded 
structure, whereas Tao and Klempererlg8 found a 
cyclic structure thanks to  the addition of bond func- 
tions. 
An obvious explanation of the discrepancy between 

the outcome of most calculations and the microwave 
data might be found in the effect of vibrational 
averaging. Whereas the electronic structure calcula- 
tions focus mainly on finding the minimum of the 
intermolecular potential, the experiment gave a 
vibrationally averaged structure. This question was 
addressed experimentally by Nelson et aZ89J99 by 
means of various isotope substitutions. From the fact 
that the relevant intermolecular bond angles hardly 
change with isotope substitution they conclude that 
(NH3)2 is fairly rigid and that also its equilibrium 
structure must be (nearly) cyclic. They supported 
this latter conclusion by the observation that the 
dipole moment of (ND&-in which the vibrational 
averaging effects are expected to be less than in 
(NH&-is 0.17 D smaller than the value of 0.74 D 
found for the (NH3)2 dimer. Nelson and co-workers 
took this as an indication that, indeed, the equilib- 
rium structure is nearly cyclic. Note, parenthetically, 
that the dipole of the free ammonia is 1.47 D, which 
means that the sum of the components of the 
permanent dipoles along the dimer axis in the linear 
hydrogen-bonded structure is about 2.0 D. 

The effects of vibrational averaging have been 
assessed theoretically in our group by van Bladel et 
aZ.1° With the use of the model potential of Sagarik 
et aZ.,lg6 which was the only full potential surface 
available from ab initio calculations at  the time, the 
six-dimensional Schrodinger equation for the inter- 
molecular motions was solved in a basis of coupled 
internal rotor functions and Morse-type stretch func- 
tions. Although it was found that the vibrationally 
averaged structure was shifted from the equilibrium 
hydrogen-bonded structure toward the cyclic geom- 
etry, the work did not produce complete reconciliation 
with the microwave geometry. Further van Bladel 
et aZ. obtained indirect evidence that the umbrella 
inversion of the two monomers is not completely 
quenched, as was assumed by Nelson et aZ.lg3 

The latter conclusion was also reached by Loeser 
et d.," who reported an extensive set of new far- 
infrared and microwave measurements and gave a 
very detailed analysis of these-as well as 
previous200-experimental data. They conclude that 
the group of feasible operations (permutations, inver- 

van der Avoird et al. 

sion and their products, see Appendix C) is of the 
order 144, which implies that they observed the 
tunneling splittings associated with the two umbrella 
inversions and the interchange tunneling in which 
the role of the two monomers is reversed. The same 
conclusion was reached by the NijmegerdBonn group,12 
on the basis of infraredfar-infrared double-resonance 
experiments. The latter authors also measured the 
dipole moment in the IKI = 1 state of G symmetry.201 
Thus, the various experimental approaches present 
evidence that seems conflicting regarding the rigidity 
of (NH3)2 and its equilibrium structure. Also the 
different ab initio calculations lead to different 
pictures. Multiple d i s ~ u s s i o n s ~ ~ ~ ~ ~ ~ ~ ~ ~  have been de- 
voted to this problem. 

Recently Olthof et aZ.203-206 presented a more 
complete theoretical approach. They constructed a 
family of model potentials with different barriers in 
the interchange motion and in the hindered rotations 
of the two NH3 monomers around their C3 axes. For 
each of these potentials they calculated the six- 
dimensional vibration-rotation-tunneling (VRT) 
states and the various transition frequencies that 
have been observed. For various states they com- 
puted the expectation values of the dipole moment 
and the nuclear quadrupole splittings, which are 
indicative of the orientations of the NH3 monomers 
in the complex. By improving the parameters they 
arrived at a model potential that was able to  repro- 
duce all observed splittings with deviations of less 
than 0.5 cm-'. Also the dipole and the nuclear 
quadrupole splittings were in good agreement with 
the observed values, both for (NH3)2 and (ND3)2. 

The potentials used by Olthof et aZ. contain the 
permanent dipole, quadrupole, and octopole moments 
(calculated at  the MBPT2 on the NH3 
monomers to  model the electrostatic interactions. In 
Figure 12A a cut through the electrostatic potential 
energy surface is shown. The angles Ox are the 
angles of the respective symmetry axes with the 
vector connecting the mass centers of the monomers. 
We observe two equivalent minima, both correspond- 
ing to  a slightly bent hydrogen bridge, separated by 
an energy barrier. To this the exp-6 site-site 
potential 

was added to account for the exchange repulsion and 
dispersion interactions. The parameters Ai were 
tuned to give agreement with the observed quanti- 
ties. By changing these parameters in the exchange 
repulsion one is able to  alter the shape of the 
potential surface and, in particular, to  vary the 
barriers to  internal rotation and to interchange of the 
monomers. Since induction effects are not explicitly 
included and the parameters are adapted to repro- 
duce the experimental data, the potential must be 
considered as largely empirical. The presence of an 
octopole is essential, because the dipole and quad- 
rupole of NHB have only axial components and the 
octopole yields the first contributions to  the electro- 
static interactions that depend on the directions of 
the individual N-H bonds. In addition to the 



Spectra from Intermolecular Potentials 

A: e lec t ros ta t ic  

Chemical Reviews, 1994, Vol. 94, No. 7 1957 

B: to ta l  

$6 

Figure 12. NH3-NH3 interaction potential (in cm-') as  a function of @A and @E, with all other angles at their equilibrium 
values. Part A shows the electrostatic dipole-quadrupole-octopole interaction a t  R = 3.23 A. Part B shows the total 
potential, with R = 3.373 A; observe the same valley for interchange tunneling as  in the purely electrostatic case. 

nitrogen nuclei and protons also the nitrogen lone 
pairs were considered as centers of force, following 
the work of Dykstra and A n d r e ~ s . ~ ~ '  Olthof et al. 
took the parameters ci simply from ref 207. The 
parameters b; were determined from the (6-12) 
Lennard-Jones (W) potential of ref 207 by requiring 
that the depth and the position of the minimum in 
the N-N and H-H terms of eq 51 coincide with the 
minimum in the corresponding term of the LJ 
potential. See ref 204 for the reason why Olthof et 
al. did not use the W potential itself. This potential 
is shown in Figure 12B, where we see the consider- 
able lowering of the barrier to  7.5 cm-l. Further the 
minima are shifted somewhat to a cyclic structure 
(the saddle point of the barrier) by the addition of 
the site-site potential, but the equilibrium structures 
can still rightly be called "hydrogen bonded". 

Before use in the calculation of the VRT states the 
potentials were expanded in the complete set of 
angular functions of eq 9. The R-dependent coef- 
ficients were computed by numerical quadrature, cf. 
eq 11. Olthof et al. carefully checked that the 
truncation of these expansions at = Lgax = 5 
did not significantly affect the shape of the potential 
surfaces. The Hamiltonian, which has to  be diago- 
nalized in order to  obtain the VRT states, is given 
by eqs 5, 7, and 9. The body-fured basis and the 
calculation of the matrix elements are described in 
section 1I.D. In the exploratory calculations, in which 
the potential parameters were varied in order to  get 
agreement with the experiments, the bases were 
truncated at j A  = j ,  = 5, cf. eq 16. The final 
calculations, employing the optimum parameters, 
were performed in a much larger basis truncated at 

j A  = j B  = 7. 
Because of the size of the basis, the full symmetry 

of the system had to be taken into account. The 
molecular symmetry group is of order 36, provided 
the umbrella inversions are frozen. Otherwise it is 
of order 144. These groups are denoted by G36 and 
GIM, respectively. Olthof et al. mainly focused on G36, 
which has four one-dimensional irreducible repre- 
sentations (irreps), designated Ai, i = 1, ..., 4, four 
two-dimensional irreps (Ei, i = 1, ..., 4), and one four- 

Table 16. Transformation Properties of the 
Coordinates in (NH& under the Generators of GN 
(the First Five Columns) and GI& (Here o = 2n/3) 

R 
a 
P 
4 A  
6 A  

* A  
4 B  
e B  
*B-w 
@ A  
QB 

R 
u+n 
n-P 
- 4 B  
n - 6 B  

n+*B 
- 4 A  
n- 6.4 

n+*A 

QB 
QA 

R 
a+n 
n-P 
n - 4 A  
6 A  

-*A 
n - 4 B  
OB 

-*B 
QA 
QB 

Table 17. Comparison of Calculated and Measured 
Properties of ("&)a (AU Values Pertain to K = 0 
States, Unless Indicated Otherwise) 

calculation 
property (ref 205) experiment 

equilibrium dipole 
equilibrium 
equilibrium 180" - 
dipole G 
dipole G (IKI = 1) 
e A a  

 EA^ - EA, 
E E ~  - E E ~  
E G  - E o  

180" - 6 B b  

- EGt 
EGr - EGt 

1.08 D 
40.47" 

OB 84.49" 
0.66 D 
0.19 D 
48.5" 
64.7" 
15.85 cm-l 
19.14 cm-l 
20.25 cm-l 
2.05 GHz 
1.24 GHz 

0.74 D (ref 199) 
0.10 D (ref 201) 
48.6" (ref 199) 
64.5" (ref 199) 
16.12 cm-l (ref 11) 
19.36 cm-l (ref 11) 
20.50 cm-l (ref 11) 
3.31 GHz (ref 11) 
2.39 GHz (ref 11) 

dimensional irrep G. Recall that the three proton 
spins of NH3 can couple either to a quartet (o- 
ammonia) or to  a doublet @-ammonia). The kets of 
Ai symmetry belong to two ortho monomers, those of 
Ei symmetry belong to two para monomers and G 
kets describe a mixed ortho-para dimer. For more 
details on symmetry adaptation we refer to  Appendix 
C. See Table 16 for the behavior of the coordinates 
under the symmetry operations. 

The results from the calculations on (NH3)2 are 
summarized in Table 17 for K = 0 and JKI = 1. Note 
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t l o  

E&3 - 

K = O  J K ( = l  K=O l K l = l  

plus the two umbrella angles @A and @B. The group 
of this system is GI44 and the labels GS refer to  
irreps of this group. These irreps correlate with the 
irrep G of G36 c G144. A dynamics problem of this 
size cannot be handled at present, so Olthof et uL206 
employed an approximate model, which is an exten- 
sion of a model proposed earlier for Ar-NH3.* In 
order to  explain this model, we recall that in section 
1II.C the inversion part of the monomer Hamiltonian 
was designated by H u b ( @ ) .  The model entails the 
computation of the expectation value of Humb(@A) + 

with respect to  the functions [E - (56)][E 
F (56)*l!Pvdwf(@~)f(@~), where (56)" is the operator 
inverting monomer A and (56) inverts B. The wave 
function !PvdW is the lowest, or the one but lowest, 

K = O  K I = l  eigenstate of the body-fixed Hamiltonian of G sgm- 

G - 

- _ _ _  G e- G 

- G 
- G 

G - 

Figure 13. Comparison of computed and observed levels 
of NH3-NH3: dashed lines, computed; solid lines, ob- 
served.11 The K = 0 ground level of each species A, E, and 
G is adjusted. In several cases the difference between 
computed and observed values is within the width of the 
lines. 

that K, which is the projection of the total angular 
momentum J o n  the dimer bond axis, is not an exact 
quantum number. Since the off-diagonal Coriolis 
coupling is small, the observed states can be well 
characterized by K and therefore the Coriolis cou- 
pling was neglected. The energy differences  EA^ - 
 EA^ and E E ~  - E E ~  in Table 17 are due to the 
interchange tunneling. Note that these differences 
are large, in the order of 20 cm-l, which confirms that 
the interchange between the donor and the acceptor 
molecule in the hydrogen bond takes place rapidly. 
Also the splitting E G  - EG between the lowest G 
states is partly due to this interchange tunneling and 
partly to  the difference between the ortho and the 
para monomers that form these G states. We present 
values of 180" - OB in Table 17, rather than of OB, 
because whenever OA x 180" - OB, we have a cyclic 
structure. The observed and calculated energy levels 
are visualized in Figure 13, which clearly shows their 
surprisingly good agreement. 

Owing to the fact that the G states belong to two 
nonidentical molecules, uiz. ortho and para, they are 
localized to some extent on one side of the inter- 
change barrier. This is in contrast with the Ai and 
E' states, which are either symmetric or antisym- 
metric with respect to  interchange. See Figure 14 
for contour plots of the G symmetry wave functions. 
These plots show clearly that the dimer is highly 
nonrigid, a fact which is confirmed by the difference 
between the equilibrium dipole and the G state 
dipoles, see Table 17. Another important observation 
is that the partial localization, which manifests itself 
in the G state expectation values of the dipole 
moment, depends also on the barriers to  rotation 
around the symmetry axes over VA and I,OB. It was 
found that addition of octopole moments to  the 
potential gave a substantial increase in the dipole 
moment; recall that the first tpx-dependent electro- 
static term is due to the octopole on monomer X. 

The final two splittings in Table 17 are due to 
monomer umbrella inversion. An exact calculation 
would require the solution of an eight-dimensional 
dynamics problem: six intermolecular coordinates 

metry, fc@A) and are ground umbrella (1'2) states 
of A and B localized in one of the wells of their 
respective monomers. hsuming that (A@AA)((~~)*I~T@AA)) 
x 0 and an equivalent relation on B,  we obtain for 
the splitting 

where A = 0.793 cm-l, the tunneling splitting of the 
free monomer.160 This splitting corresponds to  the 
inversion of the para partner in the dimer. 

Let us end this section by discussing the decrease 
of the G state dipole moment observed when going 
from (NH3)2 to (ND3)2. Since the value of the dipole 
at  the equilibrium geometry is 1.08 D, much larger 
than the average value of 0.66 D, and since one would 
expect (ND3)2 to stay closer to  equilibrium than 
(NH3)2, it is not a priori clear that this decrease will 
also come out of the calculations. However, the 
rovibrationally averaged computed dipole moment 
does decrease, from 0.66 D for (NH3)2 to 0.38 D for 
(ND3)2. This decrease follows nicely the experimen- 
tally observedlg9 decrease from 0.74 D for (NH3)2 to 
0.57 D for (ND3)2. And, also the accompanying 
changes in the angles 8 A  and OB obtained from the 
expectation values (Pz(c0s OA)) and (P2(cos OB)) agree 
well with the changes observed by measuring the 
nuclear quadrupole splittings in (NH3)2 and (ND3)2: 
(8~,180"-8~) change from (48.5",64.7") to  
(5 1.2" ,6 1.7'1, experimentally they change from 
(48.6",64.5") to  (49.6",62.6"). So it appears that 
(ND3)2 is more nearly cyclic than (NH3)2. In ref 204 
this rather unexpected observation is explained by 
analysis of the wave functions (see Figure 14). When 
the wave function of the lowest G state of (ND3)2 is 
compared with the corresponding wave function of 
(NH3)2, we clearly observe two effects. First, as 
expected, the wave function of (ND& has a larger 
amplitude near the equilibrium position around 
which it is localized. This leads to  an increase of the 
average dipole moment. Secondly, a substantially 
larger amplitude of the wave function of (ND3)2 on 
the side of the other, equivalent, minimum is ob- 
served. In order to understand the latter effect one 
has to  remember that, in spite of the equivalence of 
the two minima in the potential, the G-state wave 
functions are mainly localized on one side because 
of the ortho-para differences. This difference in the 
behavior of ortho and para monomers will be less for 
ND3 than for NH3, because its rotational constant A, 
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Figure 14. The lowest G state wave functions (absolute squared) of NH3-NH3 and ND3-ND3 in the @A-& plane. All 
other angles are fixed at their equilibrium values and R = 3.373 A. Note that  the wave functions are not symmetric with 
respect to reflection in the diagonal, unlike the potential in Figure 12 from which they are obtained. 

Table 18. Comparison of Calculated and Measured 
Properties of (ND& (All Values Pertain to K = 0 )  

property calculation (ref 205) experiment (ref 199) 
dipole G 0.38 D 0.57 D 
eAa 51.2" 49.6" 
1800 - eBb  61.7" 62.6" 
 EA^ - EA, 11.03 cm-l 
E E ~  - EE, 13.78 cm-' 
E G  - EG 13.06 cm-l 

a From (&(cos eA)) .  From  COS 68)). 

is smaller by a factor of 2. And, consequently, the 
asymmetry in the G state wave functions which is 
caused by these ortho-para differences, will be 
smaller in (ND3)z. In other words, (ND3)2 is more 
nearly cyclic (in its G state) because of the smaller 
ortho-para differences. This leads to  a smaller 
average dipole moment. Apparently, for the final 
potential used in the calculations with its low inter- 
change barrier of 7.5 cm-l the latter effect dominates 
the first and explains the observed decrease of the 
dipole moment. 

Other results from the calculations on (ND3)2 which 
are most relevant for comparison with the quantities 
observed by Nelson et aZ.199 are collected in Table 18. 
We note that the interchange tunneling frequencies, 
which have not been measured yet, are about 30% 
smaller than in (NH3)2. 

So, within one consistent computational model and 
by the use of a single parametrized potential, Olthof 
et aZ. were able to  reproduce the observed level 
splittings, the observed dimer geometry, and the fact 
that the deuterated dimer has a smaller dipole than 
the protonated one. In the explanation of these 
features there was no need to invoke near-rigidity 
or a nearly cyclic equilibrium structure. 

IV. Summary, Related Work 

In the first part of this paper we have given an 
overview of the methods used to obtain the bound 
states and the spectra of van der Waals molecules 
from a given intermolecular potential. The basic 

theory is outlined in sections 1I.A-F, derivations are 
given in the appendixes. In the second part we have 
illustrated that the spectra of van der Waals mol- 
ecules are very sensitive, but indirect, gauges of 
intermolecular potentials. Indirect, because one has 
to  use the methods of section I1 with (sometimes 
extensive) computational efforts to extract the infor- 
mation from this gauge. 

In Ar-H2 and He-HF we have seen examples 
where recent ab initio p ~ t e n t i a l s ~ l s ~ ~  perfectly repro- 
d ~ ~ e ~ ~ l ~ ~  the spectra. Still, a minor improvement in 
the anisotropy of the ab initio potential could be 
achieved for He-HF by considering the rotational 
predissociation line width. Accurate semiempirical 
potentials are available for these systems too.120J28 
For Ar-NH3 and Ar-Hz0 it was f o ~ n d ' - ~ J ~ ~  that the 
available ab initio p ~ t e n t i a l s ' ~ ~ J ~ ~  were not yet suf- 
ficiently accurate to  reproduce the high-resolution 
spectra. A fairly accurate spectrum could be calcu- 
lateds,g for Ar-NH3 by scaling one parameter in the 
short-range anisotropy of the ab initio potential. For 
Ar-H20 this was not pos~ib1e. l~~ Taking param- 
etrized model potentials and optimizing the param- 
eters in a fit of the spectrum was more successful for 
these s y ~ t e m s . ~ J ~ ~  Yet, it might be said in favor of 
the electronic structure calculations that the analytic 
form of these model potentials, as well as a number 
of their parameters, is fxed in advance on the basis 
of ab initio calculations. Full close-coupling calcula- 
t i o n ~ ~ ~ ~  of the measured163 inelastic scattering cross 
sections have confirmed for Ar-NH3 that the semi- 
empirical potential145 thus obtained is rather ac- 
curate. We expect, however, that for these and 
similar systems with three or four intermolecular 
degrees of freedom high-quality ab initio potentials 
will very soon be available also. 

For Ar-benzene the ab initio p0tentia1"~J~~ is 
probably of about the same quality as the ab initio 
potentials for Ar-NH3 and Ar-HzO, but the require- 
ments to get a correct description of the bound states 
are less subtle. The reason for this is the much 
stronger anisotropy in Ar-benzene, which restrains 
the Ar atom to stay fairly close to  its equilibrium 



1960 Chemical Reviews, 1994, Vol. 94, No. 7 

position, above the center of the benzene ring. The 
frequencies of the van der Waals vibrations which 
were calculated24J65 from this ab initio potential 
agreed sufficiently well with the measured values to  
assign the experimental spectrum. To interpret also 
the rotational structure in this UV ~ p e c t r u m , ~ ~ ~ - ~ ' ~  
it was necessary177 to include all Coriolis coupling 
between the (partly degenerate) van der Waals 
vibrations, the vibronic excitation on the benzene 
monomer which accompanies these van der Waals 
vibrations, and the overall rotations of the dimer. 
Further, it was essential to  look in detail at the 
selection rules based on the permutation inversion 
symmetry. Another conclusion from this study on 
van der Waals vibrations in combination with a 
vibronic transition on the monomer is that the 
Frank-Condon principle, which determines the in- 
tensities of vibronic transitions in normal molecules, 
is less applicable in van der Waals complexes. 

In NH3-NH3 the ab initio calculations196-198 cov- 
ered only a small fraction of the potential surface, 
uiz. that part which is critical for the question 
whether hydrogen bonding occurs in this complex. 
The calculation of bound states requires a full 
surface, however, or at  least a full scan of the regions 
with lower energy. A model potential was f o ~ n d ~ ~ ~ - ~ ~ ~  
which gives an accurate reproduction of the mea- 
sured far-infrared and microwave spectra. Questions 
regarding the deviation between the vibrationally 
averaged structure and the equilibrium structure and 
regarding the rigidity of this dimer, in relation with 
isotope substitution studies, could thus be answered. 
It appeared that the far-infrared frequencies, as well 
as the dipole moment and nuclear quadrupole split- 
tings derived from the microwave spectrum, are 
particularly sensitive to  the height of the interchange 
barrier. This barrier separates one hydrogen-bonded 
structure from the equivalent structure in which the 
proton donor and acceptor are reversed. The am- 
monia dimer is one of the cases where it will be hard 
to get accurate ab initio results, since it was found205 
that the height of this barrier is only about 7.5 cm-', 
less than 1% of the binding energy (De)  of NH3-NH3, 
which is about 1000 cm-l. Another interesting aspect 
of this study on NH3-NH3 is that it was necessary 
to  use the full permutation inversion symmetry, in 
order to  make the calculations feasible, but also to 
get even a qualitative understanding of the measured 
properties. The fact that the dipole moment, nuclear 
quadrupole splittings, etc., depend so much on the 
symmetry of the different rovibrational states which 
feel the same potential, and on the associated nuclear 
(ortho-para) spin species, is typical for a van der 
Waals molecule. 

Finally, we wish to give some references to  work 
on van der Waals molecules which was not covered 
in this review. We have concentrated on dimers, 
consisting of stable, although sometimes flexible, 
closed-shell molecules. The angular momentum cou- 
pling techniques which are extensively described in 
this paper are also applicable to  open-shell mono- 
mers. The coupling scheme has to  be extended, 
however, in order to  include the electronic orbital and 
spin momenta of such monomers. Examples are 
given by the theoretical studies on Ar-OH,208 Ar- 
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02,209-211 Ar-NH,212 and Oz-Oz.213 A general discus- 
sion of the possible coupling cases for atom-diatom 
systems with open shells is given in ref 214. 

Trimers can also be treated by the dimer methods 
described in section I1 if two of the monomers are 
considered as a single subunit. Thus, it was possible, 
for instance, to  describe A r 3  as an atom-diatom 
system215 and ArzHC1 as a diatom-diatom com- 
p l e ~ . ~ ~ , ~ ~ ~ , ~ ~ ~  The internal vibration of the A r z  diatom 
must be explicitly included, of course, and the basis 
provided has to  be adequate to  take into account that 
the amplitude of this vibration is as large as that of 
other motions in the trimer. Alternatively, one may 
use the quantum Monte Carlo method which was 
briefly mentioned in section 1I.D. This method was 
applied to (HF)3,82 but also to  van der Waals com- 
plexes with more than three  monomer^.^^,^^,^^^ Still 
larger clusters were used to  study the onset of 
macroscopic processes such as melting, evaporation, 
wetting, etc. The spectra can be used to monitor 
these processes.219 The interpretation of these spec- 
tra may be supported by classical molecular dynamics 
of (MD) or  Monte Carlo c a l c ~ l a t i o n s ~ ~ ~ - ~ ~ ~  or by 
thermodynamical considerations.226 

Another topic which was mentioned only in passing 
is the vibrational (or electronic) predissociation of van 
der Waals complexes. If one of the monomers is 
vibrationally or electronically excited, the excitation 
energy will be redistributed among the various intra- 
and intermolecular modes of the complex, in a rather 
specific manner.227 When the excitation energy is 
higher than the binding energy of the complex and 
sufficient energy enters into the intermolecular stretch 
mode, the complex dissociates. In high-resolution 
spectra this manifests itself by a broadening of the 
spectral lines, which is inversely proportional to the 
time that it takes for the excited state to  dissociate. 
More detailed information can be obtainedg8 by 
analyzing the velocities and the vibrational and 
rotational state distributions of the fragments. In 
time-resolved experiments228 these dynamical pro- 
cesses can be probed directly. In calculations of such 
processes, especially the angular aspects of the theory 
presented in this review can still be used. At least 
one relevant intramolecular degree of freedom must 
be included, however, and the description of the 
photodissociation process requires a special treat- 
ment of the R stretch coordinate.208~229-235 

An interesting option is the use of van der Waals 
complexes to study chemical reactions. Thus, one can 
prepare the impact geometry of the reactants, and 
by photoexcitation, one can select specific initial 
states. Also the final state distributions of the 
reaction products can be monitored through their 
spectra. Very detailed state-to-state knowledge about 
a chemical reaction is then becoming available, even 
more so than in crossed (oriented) beam experiments 
where the impact parameter cannot be controlled. 
Interesting experimental work is going on 

but the theory to describe the dynamics 
of these van der Waals molecule reactions in equally 
great detail is still lagging behind. 

In closing, we wish to  mention the previous issue 
of Chemical Reviews (ref 239) which was devoted to 
van der Waals complexes, as well as some other 
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reviews (refs 17, 89, 91-94, and 98), conference 
proceedings and books (refs 240-244). 
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Appendixes 

A. Kinetic Energy 
In this appendix we sketch the derivation of the 

kinetic energy in three different frames commonly 
used in calculations on van der Waals molecules. The 
first is a space- (or laboratory-) fixed frame, the 
second is the “two-angle embedded frame” discussed 
by Brocks et aZ.,18 and the third is a frame fixed to 
one of the monomers. The derivations depart from 
a general expression-derived by Beltrami over 125 
years ago-for the Laplace operator in general non- 
orthogonal curvilinear coordinates. In 1928 Podol- 
sky14 pointed out that the Beltrami form of the 
Laplacian (times -l/2h2) is the proper expression for 
the quantum mechanical kinetic energy. By its use 
one avoids tedious applications of the chain rule and 
is also able to  take account of possible holonomic 
constraints that reduce the number of degrees of 
freedom. See the excellent review by Essen15 for a 
discussion of the problems associated with this ap- 
proach. 

First we will review the case of a system of two 
atoms and point out some problems that appear in 
body-fixed frames. The diatom is the simplest ex- 
ample by which we can discuss this. Then we review 
the case of a rigid rotor, because the monomers 
constituting a van der Waals molecule are often 
assumed to be rigid. This is followed by a discussion 
of a rotor-atom system with the frame attached to  
the rotor. Finally we consider a dimer consisting of 
two rigid rotors described in the two-angle embedded 
frame. 

We will indicate a geometric-frame indepen- 
dent-vector (an “arrow”) by an arrow over the 
symbol. Usually such a vector points from one 
particle to  another. The coordinate representation 
(three real numbers) of a vector with respect to a 
certain frame, is given in bold face. A frame is bold 
with an arrow on top of it. Thus, the vector pointing 
from A to  B is written as 

AB = e,x + e o  + e32 ---(I - 
- +  - - 

( e l ,  e2 ,e3) y e r 

-dd 

where Z (e l ,  e2,  e,) is a certain frame. 
In the case of time-independent constraints the 

classical kinetic energy of a system with n degrees 
of freedom can be written (see ref 245, p 25) in 
general curvilinear coordinates qi, i = 1, ..., n,  as 

which defines the metric tensor G. The determinant 
of G will be denoted by g;  as is well known (ref 246, 
p 195) l/g dq1 ... dqn is the volume element of the 
coordinate system. The momentum pq conjugate to  
q is defined by 

642) 
aT pq = Gq -pi = - 
a4i 

so that the kinetic energy in Hamilton form is 
T -1 

2T = PqG Pq 

Quantization is performed by substituting 

i = 1, ..., n a pi - -ih - 
aqi 

not into eq A3, but into 
1/2 T 1/2 -1 

2 T = g -  Pqg G Pq 

This is because the Laplace operator in general 
curvilinear coordinates has the form (ref 246, p 197) 

Podolsky14 also discusses a more symmetric form of 
the operator obtained by renormalizing the wave 
function Y. That is, he substitutes Y - g-lI4Y and 
takes an unweighted volume element. This gives 

1. Two Atoms 

Let us apply formula A6 to  a diatomic van der 
Waals molecule A-B with its mass center at rest. In 
a space fixed frame Z = (ex, ey ,  e*) ,  we have classi- 
cally 

d d d  

lR(t) cos a(t) sin P(t) 
AI? = 2 R(t) sin a(t) sin P(t )  

By the chain rule 

It is easily verified that the Jacobi matrix arising in 
this expression is given by 

where 

cosp 0 sinp 

-s inp 0 cosp 

cos a -sin a 0 
]Rz(a) = sin a cos a 0 

( 0  0 1 

1 0 ] ( A l l )  
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Hence 

a a - cot p cos a -  - sin a--\ 
aa aP a a - cot p sin a - + cos a - 
aa aP a 

(MI) 

with 

m ~ m ~  
'AB = (m, + m,) 

so that 

0 

and 
& = r u m  312 R 2 s i n p  

The momentum conjugate to  the spherical polar 
coordinates is 

p = p ,  1 R2 sin pa ' 5 111 Pa (A141 

The quantum mechanical kinetic energy is from eqs 
A13 and A6 

a 1 a 2 +  -sin P- + - - aP sin2 p aa2 

-R - (A15) aR aR 
which we recognize as the usual one-particle kinetic 
energy in spherical polar coordinates. In the absence 
of an external potential the Schrodinger equation can 
be separated and the angular solutions are the 
spherical harmonic functions @,(P,a). In this dis- 
cussion we ignored the quantum mechanical trans- 
lational motion, which we do everywhere in this 
paper. 

The angular momentum defined classically as 

can be most easily evaluated in the following frame 
embedded in the molecule 

f ZR(a,P) with Na,p) = p%,(a>R&3) (A171 
It is worth noting that the matrix RP(a,P) consists of 
direction cosines, since [R(a,P)lg = ei * 6 . By the use 
of eqs A17, A9, A10, and A14 we find that in this 
frame 

- 

- +  

so that 

Quantization gives 

\ " I  
It is important to  note that the components of jBF do 
not satisfy the usual angular momentum commuta- 
tion relations. Because of the presence of sin /3 in 
the volume element, the operator i,"" is not even 
Hermitian. In the space-fixed frame we obtain the 
usual orbital angular momentum operators, which 
are Hermitian and do satisfy the normal commuta- 
tion relations 

I = eR(a,p>l 
- *BF = GiSF = 

I - 
aa 

It is also important to note that the operators 
representing 1ZI2 in the space- and body-fixed frame 
are different 

(1 -(I - ificotPlfF = *SF 2 - "BF 2 

sin P - a + - - d 2 ]  (A22) i a  
- n 2 [ z Q  ap aP sin2p aa2 

The space-fured opgrator is the proper representation 
of the observable 1ZI2.  

2. The Rigid Rotor 
We next turn to  a rigid rotor consisting of N point 

masses mi wit .  space-fixed coordinate vectors ri. We 
take a frame f attached to the rotor and define the 
Euler angles of the rotor by - 
f = aq(4)~p)pl,(v) = ZR(S), s = (4, e, v )  (AB) 

The matrices Ri are defined in eq A l l .  The classical 
kinetic energy of a rigid rotor is 

(A241 

The inertia tensor of the rotor is defined by (ref 245, 
p 195) 

SF T SF SF 2 T = ( o  )I o 

N 

The components of the angular velocity oSF are not 
the time derivatives of certain coordinates (ref 247, 
p 411, but they are related to the derivatives of the 
Euler angles by 

1 0 - s i n 4  cos @sin  0 

1 0  cos 0 
oSF = Mk where M = 0 cos4 s in4s inO 

(A261 
Hence 
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ZBF, see eq A21. However, the components ofjBF are 
Hermitian (as are the components ofjSF), although 
they do not satisfy the usual commutation relations, 
but rather the so-called anomalous relations 

G = MTISFM (A271 

The derivation of eq A26 is along the lines given in 
ref 245, sections 4-9, but modified for our definition 
(eq A23) of Euler angles, which differs from the one 
in ref 245. 

The determinant of 6 is the product of the inertia 
moments (the eigenvalues of ISF) and the determinant 
squared of M; the latter factor is sin2 8. The angular 
momentum of the rotor is 

where ps is the momentum conjugate to  6. By 
substituting pi - -zh ala& and inverting M we find 
the well-known expressions 

a a COS+ a 

a sin4 a 84 a 
a d  ae sin e allr 

j:~ = ih(cos 4 cot e- + sin 

= iii(sin 4 cot 8- - cos 
- a G) 
- - -1 

It is not difficult to  prove that these operators satisfy 
the usual commutation relations 

(A301 

where E v k  is the antisymmetric (Levi-civita) tensor. 
By virtue of the fact that 

= 0 for j =  1 , 2 , 3  (A31) 1 
the square roots of the determinant of G appearing 
in the Beltrami formula (eq A6) cancel and the kinetic 
energy of the rotor can be written in terms of the 
angular momenta 

If we take the frame ?to be a principal axes frame 
(Le. it to  consist of eigenvectors of the inertia tensor), 
then by definition 

If all three inertia moments I=, I&,, I, are equal, the 
rotor is a spherical top (example CHd. If two are 
equal we have a symmetric top (example NH3) and 
if none are equal we have an asymmetric top (ex- 
ample H20). Defining the matrix 

N = R ( p M  (A341 
we find 

with 

This relation is analogous to the one between ZsF and 

The lengths are the same in the two frames 

a sine% (A38) 

Since a relation analogous to eq A31 holds for N, the 
kinetic energy can be written as 

where the rotational constants A, B,  and C are 
inversely proportional to  the inertia moments of the 
rotor. 

3. Rotor-Atom 

We will now consider the case of a rigid rotor A 
and a freely moving point mass B .  The kinetic 
energy-operator will be expressed with respect to  a 
frame f attached to A. The frame is for example a 
principal axes frame of the rotor. The kinetic energy 
expression, to  be derived via the Podolsky route, was 
obtained earlier24 by application of the chain rule. 

The frame independent classical kinetic energy 
takes the form 

where  AB is the reduced mass of the dimer and A 
and B are the respective centers of mass. By the use 
of eqs A24, A33, and A34 we can write 

2 T ~ = 0 ~ 1 ~ ~ U  with 0 = &  (A41) 

where 6 = (#,8,q) are the Euler angles of the 
rotor. The vector has the coordinate R(t)  = 
[x(t)y(t),z(t)l with respect to  the body-fixed frame, and 
so 

It  is well-known, see for instance ref 245, sections 
4-9, that 

(A431 

We will rewrite the vector product. as follows, in order 
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t o  get an expression for T quadratic in e, 
0 z( t )  -y(t) 

y ( t )  -d t )  0 
From 

van der Avoird et al. 

(A451 

we find 

lF12 = wTxXTo + &(t)TxTO + oTx.z2(t> + 
Ik(t)12 (A461 

By the use of eqs A41 and A46, we obtain the 
following expression for the rotor-atom system, from 
which we may extract the metric tensor G: 

2T = 

(A471 
The inverse of 6 can easily be calculated by the 
Frobenius formula (ref 248, p 73) and gives (cf. eq 
A3) the classical Hamiltonian 

(IBF)-l - (pF)-1 N-1 0 ( -(IBF)-I (IBF)-l + bABxTX)-l)( 0 X T r g :  ) 
(A481 

where p~ = p& + p m X T N g  is conjugate to  R and 

p C  = NT[(IBF + pABXXT)Nf‘ + p A B X k ]  (A49) 

Note that pc contains contributions due to the motion 
of the rotor (the terms linear in IBF), and terms 
arising from the motion of the “relative particle” 
(linear in the reduced dimer mass pm). After quan- 
tizing, i.e., after replacingp4 by -ih ala& etc., the 
operator pc depends only on the Euler angles of the 
rotor. However, we must bear in mind that these 
angles are also the Euler angles of the frame in which 
the motion of the whole complex is described, so pc 
is (the angular part of) the generalized momentum 
of the whole complex. 

which is the total dimer angular momentum. We 
define the angular momentum of the relative particle 

P5 to  5‘) and 

In accordance with eq A35 we write JBF = ( N - l I T p  5 ,  

by 

(A501 

With these definitions the classical Hamiltonian A48 
becomes 

I BF E R x P R = X . P R  

Equation A51 has a clear physical interpretation: 
since JBF-ZBF is the angular momentum of the rotor 
and IBF is its inertia tensor, the total kinetic energy 
is the sum of the kinetic energies of the rotor and 
the relative particle. 

In order to  obtain the quantum mechanical form 
we use again the Laplace-Beltrami expression, eq A6, 
for which we need the determinant g det(G). From 
eq A47 follows that g = pk det(NI2 det(IBF). Fur- 
thermore, on account of eq A34 we have det(N) = 
-sin 8. By the analogue of eq A31, holding also for 
N, it follows that g1I2 drops out of the Laplace- 
Beltrami expression, so that the quantum mechanical 
kinetic energy obtains the same appearance as the 
classical expression A51, but with the total angular 
momenta defined as follows: 

a J:F = ihi-cos v cot e- - sin qa + % 2) av ae sin e a4 
a J:F = ih(sin q cot e- - cos tp$ - 6) I av 

and the operators depending on the position of the 
atom defined as 

4. Two Rotors 
We now consider the kinetic energy of the dimer 

A-B consisting of two rigid rotors. From classical 
mechanics we know that 

T = TA + TB + TAB (A541 

where the kinetic energy of the “relative particle” is 
given by 

The kinetic energies of the monomers X are indicated 
by Tx, X = A,  B.  In order to obtain quantum 
mechanical operators we describe the kinetic energies 
with respect to a frame. The most obvious frame is 
the space-fixed frame Z, with ,5(t), a@), and R(t) being 
the spherical polar coordinates of a. Exactly as 
for the diatom, eq A15, we find 

with (2SF)2 given by eq A22. The kinetic energies TA 
and TB are given by eq A32. 

The main advantage of a space-fixed frame is that 
it yields a simple kinetic energy expression. How- 
ever, the matrix elements of the anisotropic terms 
in the intermolecular potential are complicated when 
evaluated space-fixed and require much computer 
time. Furthermore, the Coriolis coupling between 
the motions of the monomers and the overall rotation 
of the dimer is often weak for low angular momentum 
quantum numbers. Since this coupling does not 



Spectra from Intermolecular Potentials Chemical Reviews, 1994, Vol. 94, No. 7 1965 

The kinetic energy TAB has the diatom form, cf. eqs. 
A1 and A13: 

2TAB = p d 2  + eTG where 

appear explicitly in the space-fured kinetic energy, 
it is difficult to take advantage of this fact and to 
simplify the computation by neglecting or approxi- 
mating the Coriolis interaction. See ref 20 for a 
discussion of body- versus space-fixed axes in the 
framework of scattering theory. 

For these reasons we consider an embedded frame 
f ,  with its z axis along a, obtained from the space- 
fixed frame as in eq A17. Classically the kinetic 
energy is a rotational invariant, Le. it can be written 
as, 

- 

where P = p& is conjugate to  R, j x  = R(a,/?)3y (do 
not confusejx w i t h j y  given in eq A36), ZBF is given 
in eq A19, and 

Quantum mechanically we must proceed with care 
because the framezx attached to the rotor X is 
expressed with respect to  the embedded and space 
fixed frames as follows: 

- 
gx = ?RR(S~) = Zw(a,P>NSx) (A591 

and since ?is a noninertial frame, the kinetic energy 
expressions for the rigid rotors constituting the dimer 
must be revised. More specifically, for an arbitrary 
vector r we write 

k(a,p)r = 

1 0 - acosp  /3 
R(a,P) &coSP . o a s i n P  r =  

-p - a s i n p  0 
R(a,p)oR x (A601 

i 
where, with e (p, a) 

-a sin ,8 0 - s i n p  

a cos ,8 
oR=[ . /3 ]=Ye and Y = [ l  0 cosp 0 1 

(A61) 
So, we get an extra angular velocity component which 
must be added to the angular velocities ox of the tops 
with respect t o  the frame f obtained in the usual 
manner from I&). Hence by an easy extension of 
the usual rigid rotor theory (ref 245, sections 4-9) 
the classical kinetic energy of X takes the form 

2Tx = ( M d x  + Y@)'Ix<MkX + Y@), X = A, B 
(A621 

The inertia tensor is defined in eq A58, i .e .  it has the 
form of eq A25 with @e particle coordinates ex- 
pressed with respect to  f.  The matrix MX is defined 
in eq A26, with the suffix X reminding us that it 
depends on &. 

Combining eqs A54, A62, and A63 we obtain for the 
dimer 

T ' T  T 2T = p d 2  + <E, ,SA,tB) 
K + Y ~ ( I A  + IB)Y Y~IAMA Y~IBM, i MgBBY 0 M ~ H B M B  

@IAY M L M A  Q ]['!i] (A64) 

which defines the angular part 6 of the metric tensor. 
According to the Beltrami expression A6 we must 
invert this tensor, which is most easily done by the 
Frobenius formula (ref 248, p 73) for the inverse of 
block matrices. Thus we find 

0 0 Mi1 

I - j p y T  

'KHa-'YT 
w - y  qj1 + y p y T  

[E g1 1 (A65) 

The determinant of a block matrix can also be 
calculated (ref 248, p 711, we find that det(6) = 
det(MJ2 det(Md2 det(K) = R4 sin2 6 A  sin2 6 B  sin2 /?; 
the proportionality factor is a product of the inertia 
moments of the monomers and the reduced dimer 
mass. The classical kinetic energy in Hamilton form 
becomes: 

0 0 Mi1 

where ne is conjugate to  e = (p, a) andpx to SX. 
In eq A57 we saw that the Hamiltonian becomes 

very simple when expressed in terms of angular 
momenta; we will see that the same is true for the 
corresponding quantum mechanical expression. In 
order to  make the transition to quantum mechanics 
we must express the classical angular momenta in 
terms of linear momenta conjugate to the coordinates. 
I t  follows directly from eq A64 that 
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px = M;Ix(M& + Y@) (A681 

It is not difficult to  show with the use of eqs A26 and 
A61 that the angular momentum ofX expressed with 
respect to the embedded frame is 

- 
jx = 7 Ix(ox + oR) = 7 I x ( M d x  + Y@) (A691 

from which follows by the use of eq A68 and the 
definition A28 

van der Avoird et al. 

Incidentally, this proves that j, indeed rotates as a 
vector, which we already used to arrive at  eq A57. 
Substitution of eq A69 into eq A67 gives 

n,, = + YT(iA + j B )  (A711 

From eq A19, eq A14, and the definitions of K and Y 
we obtain 

From 3 
motion, we conclude that 

7 +z +x, where 3 is a constant of the 

nQ = YT(lBF + j A  + j B )  = YTJ (A73) 

From the definition of Y and upon noting that J ,  = 
j ,  + j ~ , ,  since 1,"" = 0, we find 

J ,  = - sin-' p na + cot p<j, +jB,) 
Jy = zP (-474) 

The quantum mechanical form of the operatorsjx is 
obtained by replacing in eq A70 PXI by -ih ala& etc. 
This shows that these operators have the space-fixed 
form of eq A29, but with the Euler angles of the rotors 
referring to the embedded frame. The equations A74 
give the quantum mechanical form of Jx, Jy, and J,, 
the projections of the total angular momentum on the 
embedded axes. Just as in the diatom case in 
Appendix A.l ,  these projections do not satisfy the 
usual angular momentum commutation relations (eq 
A30), nor the anomalous ones (eq A37), which is why 
Brocks et aZ.18 refer to them as pseudoangular 
momentum operators. Observe that J is the sum of 
the angular momentum of the "diatom" A-B and the 
effective angular momentum (cot p ( j ~ ,  + j d ,  0, j h  + 

j B z ) ,  which arises from the motion of the rigid rotors. 
Because of the presence of sin p in the volume 
element, the operator Jy  is not Hermitian. The 
quantum mechanical expression for the operator lBF 
follows from lBF = J - j  A - j B *  

The kinetic energy becomes by substitution of eqs 
A70 and A73 into eq A66 and remembering that J ,  
- j h  - j B z  = 0 

I J, = j h  + j B ,  

r 

2 T = l p +  PAB 

When evaluating the kinetic energy operator we can 
follow the route that led to this classical Hamiltonian 
with one modification: we must insert [det(G)ll" at 
two places in accordance with eq A6. Because of eq 
A31 the factors sin 6A and sin OB drop out of the 
expressions, but sin ,8 gives an extra term not present 
in the classical kinetic energy. Using 

C [ J i ,  sin p] = [J,, sin PI = [nP, sin p] = -ih cos p 
(A751 

i 

we find 

2T = -[-h 1 2 a  -R 2 a  - + (J, - j h  
PABR2 

4- aR aR 

By the definition of J ,  eq A74, and the angular 
momentum commutation relations in eq A30 it is 
readily derived that 

(J, -jh - j ~ ~ ) ~  + ( J y  - j ~ ~  - j ~ ~ )  - J f ( i~  + 2 -  2 

j B ) 2  - 2(iA + j B ) . J  - ih cot ~ G A ~  + j B y )  (A77) 

Note that 6 J: + J j  + J i  is not the operator 
representing IJI2, since it gives the total angular 
momentum with respect to  the embedded frame. 
Defining 

f3F = R(a,p)J (-478) 

we can show as for the orbital angular momentum, 
eq A22, that 

(A79) 

From eq A74 it follows then that (SF12 has the rigid 
rotor form 

S F 2 -  2 (J ) - J - ih CotpJ, 

- aaay 

with y = (@A + @B8)/2. The kinetic energy in the 
embedded frame can finally be written as 

We are free to  write TA and TB in the principal axes 
form of eq A39, but notice that the angular momenta 
jzF andj;" in this expression are not the operators 
j A  andjB appearing in eq A81. The latter are given 
by eq A70, that is, they have the space-fixed form of 
eq A29. 

In the calculation of matrix elements of the Hamil- 
tonian A81 it is convenient to  introduce step opera- 
tors. Writing j ,  = j A ,  + j ~ ~ ,  (m = +, z ,  -), we define 
these by 
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j ,  = j ,  f ijy and J ,  = J ,  F iJy (A821 

The Coriolis interaction then takes the form 

2(i, + j&J = G J  = 2j,J, + j+J+ + j - J -  (A83) 

Notice that J, = j ,  commutes with the whole Hamil- 
tonian (eq A81), except with the last two terms of eq 
A83, the off-diagonal Coriolis interaction. The 
“pseudoshift” operators J F  follow from eq A74. The 
usual body-fixed step operators J+ follow from eq 
A52. Comparison of the pseudo- and body-fixed step 
operators shows the following relation, which we note 
for future reference 

BF Tiy BF J* = er i y (Jy  T- iJy ) e J+ (A84) 

B. Angular Basis Functions 
When using the irreducible matrices W(a,P,y), 

which represent the full rotation group S0(3), one 
must be aware of different conventions used by 
different authors. In the first place, some authors 
rotate the reference frame (the “passive” convention) 
and others rotate the molecule (the “active” conven- 
tion). Secondly, two Euler parametrizations are in 
common use: the zxz and the zyz convention. In the 
first case one rotates around the z ,  x’, and z” axes, 
successively, and in the second case around the z, y’, 
and z” axes. The third point to  be noted is whether 
the three-dimensional rotations are mapped homo- 
morphically (“Wigner’s convention”) or anti-homo- 
morphically onto Hilbert space operators. A final 
point of concern is the phase of the kets carrying the 
irrep of SO(3). Since we consider only integer 
quantum numbers in this work, this is tantamount 
to  specifying the phases of the spherical harmonic 
functions. The physics literature seems to converge 
to the following convention: (i) active rotations, (ii) 
zyz Euler angles, (iii) Wigner’s convention, and (iv) 
Condon and S h ~ r t l e y ~ ~ ~  phases for spherical harmon- 
ics. Making these choices, we define the Wigner 
rotation matrix depending on the Euler angles 0 I 
a < 2n, 0 I p I n, and 0 I y < 2n as follows 

(B1) 

The functions dc,,(P) were first derived by 
by means of a simple group theoretical 

argument, 

dfpm(P) = 

-im’ad(j), (Ple-imy D:,,(a,P,y) = e m m  

[o‘ + m’)!o’ - m’)!o’ + m)!o‘ - m ) ! l l ’ 2 C ( - l ) ” - m + s  
S P 2j+m-m‘-2s m‘-m+2s 

(cos 2) (sin f )  
(€32) 

(j + m - s)!s!(m’ - m + s)!V - m’ - s) !  

P 2j+m-m‘-2s m‘-m+2s 
(cos i) (sin :) 
. -. . -. 

(€32) 
(j + m - s)!s!(m’ - m + s)!V - m’ - s) !  

where s runs over all possible values such that the 
factorials are nonnegative. The complex conjugates 
of these functions satisfy the relations 

j ,  SF Dmrm(a,P,y)* 0’) = tim’D;,,(a,P,y)* (B3) 

where the space-fixed angular momentum operators 
are defined in eq A29, with 4 - a, 6’ - P, and 11, - y .  
Note that the operators representing the components 
of the angular momentum along the space-fixed axes 
act on the first (row) index of the D matrix. The 
body-fixed operators of eq A52 act on the second 
(column) index 

j ,  BF D,,,(a,P,y) (j) * - - hmDO” mlm(a,P,y)* (B5) 

where the role of the step-up and step-down operators 
is interchanged due to the anomalous commutation 
relation A37. From eqs B3 to  B6 we find 

i.e., the complex conjugates of the D matrices are 
simultaneous eigenfunctions of the commuting op- 
erators (jSFI2 = (jBF)2, j?, and j,””. Since the sym- 
metric top Hamiltonian can be written as A(jBF12 + 
(C - A)(j,BF)2 (cf. eq A39) it follows that the complex 
conjugate D matrices are eigenfunctions of this 
Hamiltonian, which is why they are often referred 
to as symmetric top functions. 

The D matrices are orthogonal and normalizable: 

We recognize this as the great orthogonality relation 
applied to the full rotation group SO(3). Further- 
more, by the Peter-Weyl theorem (ref 251, section 
7.2) the D matrices are complete on the Hilbert space 
L2[S0(3)1. 

From the completeness of the symmetric top func- 
tions follows by a simple argument (ref 251, p 160) 
the completeness of the functions dr,,(P) on the 
Hilbert space L2[0,n1, [arbitrarily fixed m and m’, j 
running: j L max(lm1, Im’l)]. By the same argument 
it can be shown that the functions Drrm(a,P,O)* are 
complete with arbitrary fixed m and runningj and 
m’. In particular it follows that the set 

is complete. 
Let us consider an angular basis for two rotors with 

Euler angles [ X  = (&&,qx), X = A, B,  with respect 
to  the two-angle embedded frame introduced in 
Appendix A.4. From the previous remarks it follows 
that 

(SA)* DZkB(gB) * D(I) mk(a,P,O>* (€310) Dm AkA 
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forms a complete set, when all indices-except k-are 
running. The value of k may be chosen arbitrarily. 
This set is larger than necessary for use in varia- 
tional calculations on the dimer, since it includes all 
different eigenfunctions of the total dimer angular 
momentum and its projection onto the space-fixed z 
axis. Because of the isotropy of space these two 
quantities are constants of the motion. To take 
advantage of this we first define, using Dirac's 
notation, 

van der Avoird et al. 

where Na,P) is unitary. In Dirac notation 

(kIZm) = Ck(p,a) with k = (P,a) (B13) 
and 

(klB(a,P)lZm) = ((0,O)IZm) = Ck(0,O) = dm, (B14) 

Let I{A}JM) be an eigenket of the total angular 
momentum (SjF)2 and its projection J F  on the 
space-fixed z axis obtained by vector coupling 

By the definition of vector coupling and the unitarity 
of the D matrix, we get 

G'(a,P>-ll{A)JM) = ~I{A}JK)D~~a ,p ,O)*  (B16) 
K 

We now transform from space-fixed to embedded 
coordinates as follows, where we use eqs B12, B16, 
and B14, respectively 

<sF,g&l { AlJM) 

= ( < ~ , c ~ ~ $ I  G(a,P)%a,P>-lI{AIJM) 

= C(CA,CB, (O ,O) I  { A > J K ) D ~ ~ ~ , P , o ) *  

= C<CA,CB I { A > K ) D ~ ~ ~ , P , o ) * ( ~ , K ; ~ ~ I J K )  

K 

(B17) 
This shows that the representations of the eigenket 
1 {A} JM) in space-fixed and embedded coordinates are 
related linearly. In a variational calculation such a 
linear combination serves no purpose and one often 
uses the uncontracted basis functions, defined with 
respect to  the embedded frame 

K 

.. .. 
mAmB 

which are also eigenstates of (JSFI2 and J Y .  An 
advantage of these basis functions over the space- 
fixed basis in eq B17 is that they are simultaneously 
eigenstates of Jz ,  with eigenvalue K. 

We end by saying a few words about the calculation 
of kinetic energy matrix elements between the basis 
functions B18. Since 

and mA + mg = K, by virtue of a selection rule on 
the Clebsch-Gordan coefficient in eq B18, we see 
that the basis functions contain the factor exp(iKy) 
with y = (#A 4- @B)/2 .  When operating with (pF)2, 
appearing in the Hamiltonian A81, it is convenient 
to  transfer this factor to  the first D matrix, writing 
it as Drda,P,y)*, after which eq B7 may be used. In 
order to  act with the pseudoshift operators, defined 
in eq A82, we use their relation to the regular body- 
fixed step operators, eq A84, and find 

JPFda,P,y)* = 

C. Symmetry 
In this appendix we will discuss a few of the 

symmetry aspects that play a role in the study of van 
der Waals molecules. Let us first consider an atom- 
diatom system from a purely geometric point of view, 
ie., without introducing a coordinate frame. It 
consists of three atoms located at points A, B ,  and 
C ,  respectively. Let 0 be an arbitrary point and M 
be the center of mass of the diatom. The vector 
m, ( P  = A,  B, C ,  or M) points from point 0 to point 
P. Obviously 

LE@=DE--TOM (C2) 

Space inversion of an arbitrary point P with respect 
to  the point 0 is defined by 

and so 

Assume now that the atoms A and B are identical, 
so that the permutation PAB of A and B is a symmetry 
operation and M is at the midpoint of the diatom 
A-B. Since neither M nor C are touched by PAB the 
vector R is symmetric under Pa. It follows directly 
from the definition of F, eq C1, that this vector 
changes sign under PAB. 
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Next we take the point 0 at the dimer center of 
mass and erect an arbitrarily oriented space-fixed 
frame at  0 

What happens with the space-fixed coordinates of 3 
and 7 (RSF and rSF, respectively) under the two 
symmetry operations E* and PAB? To answer this 
question, we note that these operations, as defined 
above, are active, that is, the frame Z does not change 
under these operations. The space-fixed Cartesian 
coordinates therefore transform as 

Let (r)3SF,$SF) be the polar coordinates of rSF and let 
(R,P,a) be the same of RSF. The following symmetry 
properties are easily derived 

l a - z + a  
The operation PAB leaves ,!? a i d  a invariant and 
transforms gSF and $SF in the same way as E*. In 
Table 1 we find the transformations of the angular 
functions under these substitutions. 

So far the development is completely straight- 
forward, but in the dimer-embedded frame more care 
is required, as this frame is not invariant under the 
two symmetry operations-in contrast to  the space- 
fixed frame. In order to  show this, we first recall the 
definition of the rotation matrices, cf. eqs A l l ,  and 
the definition, eq A17, of the dimer frame 

f = Z R,(a>R&p) (C8) 

By direct matrix multiplication the following useful 
rules are easily proved 

- 

R&)q(n) = R,(n) (C9a) 

RJn)%(-y) = qY(y)Rx(n) (C9b) 

RJy)R,(y’) = q < r  + 7’) (C9C) 

The same relations hold also with 2, y, and z 
permuted. 

Substitute now the angles (eq C7) transformed by 
E* into eq C8 defining the dimer-embedded frame, 
and rewrite the ensuing matrix equation by the rules 
just stated: 

R,(n + a)$h - PI = Rz(a)R,(n)q(n)$(-P) 
= ~,(a)%$(P>IRx(n> (C10) 

Hence we find that the dimer frame 
under E* as 

transforms 

(C lU 
Bunkerlo8 refers to  &(n) as the equivalent rotation 
of E*. Since p and a are invariant under PAB, the 
dimer frame itself is also invariant under this 
permutation. 

E*: T - T RJn) 

Consider next 
nates transform 

so that 

E*: 7 
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how the dimer-embedded coordi- 

r’ = -IR,(n)r or E*: r - -RJn)r (C13) 

For the elements x, y, z of r and its spherical polar 
coordinates this gives 

r - r  
r ’=  E] and E*: [ 8 - 4 6  

f#J--.n-+ 
(C14) 

so that E* is equivalent to  a reflection of 5: in the yz 
plane of the dimer frame. 

The dimer-frame coordinates 

R = (i] 
of are invariagt under E* as well as under P-. 
Since the frame f i s  invariant under PAB, it follows 
straightforwardly for the dimer-frame coordinates of 
7 that 

r - r  
Pa: 8 - n - 9  (C15) 

Before leaving the atom-diatom case we wish to 
point out that E* is a feasible operation of the first 
kind, because the intermolecular potential does not 
depend on f#J and E* only affects 4, cfi eq C14. 
However, PAB gives a tunneling through a possible 
barrier in 9, see eq C15. Depending on the height of 
this barrier PAB may, or may not, be feasible. Given 
the weakness of van der Waals forces, the barrier will 
in general be so low that the permutation is feasible 
and the symmetry group of the atom-homonuclear 
diatom system is of order 4 and isomorphic to  CZu. 

In the case of a van der Waals molecule containing 
nonlinear monomers X ,  we must choose right-handed 
frames zx attached to the monomers and specify 
the Euler angles of these frames with respect to  
another right-handed frame. This latter frame is in 
practice either a-space-fixed frame Z or a dimer- 
embedded frame f.  If a monomer is rigid, any body- 
fured frame will do, because in that case the only 
feasible permutation inversions are of the first kind 
and equivalent to  proper rotations. Recalling that a 
proper rotation conserves the handedness of a frame, 
this means that the feasible monomer permutation 
inversions transform the Euler angles of a rigid 
monomer in a well-defined way. If, however, the 
monomer is not (nearly) rigid, or in other words 
feasible operations of the second kind must be 
considered, then special care in defining the molecule 
frame must be taken. For instance, the well-known 
ammonia (umbrella) inversion transforms a right- 
handed monomer Eckart frame into a left-handed 
one, so that the effect of this inversion on the Euler 
angles of an Eckart frame cannot be defined. In such 
a case it is better to  use the construction that is 
commonly applied to  planar molecules, which consists 

i +- -Jt+f#J  
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of choosing two orthonormal body-fixed vectors, say 
g, a n d z ,  and define the third as the vector product: 
g, = g, x gy. In that case the frame is right-handed 
by definition, all the feasible permutation inversions 
are equivalent to  rotations of the monomer and their 
effect on the Euler angles can be given. 

We will now exemplify the procedure on the argon- 
ammonia van der Waals molecule8 and start by 
reviewing briefly the symmetry of the free ammonia. 
Let M be the center of mass of NH3 and let the 
protons be HI, Hz,  and 2 3 3 .  The following is a body- 
fixed frame attached to ammonia: 

- 
- - -  

van der Avoird et al. 

This frame is not necessarily orthonormal, but if we 
impose the constraints that the N-H bond lengths 
and the HNH angles stay equal, then the frame 
becomes orthogonal and can be normalized. I t  is 
important to note that the normalization o f z  and 
gy is equal, so that the frame as it stands can be 
used to derive the effects of the monomer permuta- 
tion inversions. By some simple algebra it can be 
derived that 

(C17) 

(23@ = g RJn) (CIS) 

The vectorsz a n d z  change sign under E* and the 
vector product 

- 

(123)g = 3 Itz( -2d3)  

is invariant, so that 

E*Z = g W,(JG) ( C W  

We define the NH3 inversion coordinate z as the inner 
product of two collinear vectors: 

z=MN*gz  (C20) 

This coordinate is related to the umbrella angle e 
defined in section 1II.C as z = (3/2)r:(l - <)sin2 x 
cos e,  where ro is the N-H bond length and < = 
m ~ / ( 3 m ~  + mN). Since Mt\i is invariant under per- 
mutation of the protons, z inherits its permutational 
properties f romg,  or in other words, z changes sign 
(and e I--- n - e) under the permutation (23) and 
both are invariant under (123). Because it does not 
affect the geometry of the molecule, (123) is a feasible 
permutation of the first kind. However, the permu- 
tation (23) is of the second kind, as it changes the 
internal coordinate t. The operation E* inverts 

and leaves alone, so that z changes sign 
under E*, and E* is also of the second kind. The 
operations of the second kind yield a tunneling 
through the umbrella barrier of NH3 and give rise to  
an observable splitting of about 0.8 cm-l. The group 
of operations of the first kind consists of 
{E,(123),(132),(12)*,(13)* (23)") and is isomorphic to  
the point group C3" of the nearly rigid molecule. The 

total molecular symmetry group, generated by (231, 
(1231, and E*, is of order 12 and is isomorphic to  D3h. 

If we now assume that argon is at the point A, then 
we observe that the vector KAis invariant under 
the permutations of the protons, as the center of mass 
M of ammonia and the position of argon are not 
affected by the permutations. The operator E* 
inverts the direction of MA We choose a dimer 
frame as in eq C8 and let the Euler angles of 
ammonia be given with respect to  that frame 

z = t f  ItZ($)qe)q(v) (C21) 

By using the rules in eq C9 we easily derive the effect 
of the operations on the coordinates and by the use 
of Table 1 we find how the angular functions behave. 

The operations which are of the first kind in the 
free ammonia become of the second kind in the dimer, 
as ammonia no longer moves in an isotropic space, 
but experiences a 8- and q-dependent intermolecular 
potential. In the case of argon-ammonia the q-de- 
pendent barriers are so low that all first kind 
permutation inversions of the free ammonia remain 
feasible in the dimer. The permutation inversions 
of the second kind in the free ammonia are hindered 
by the intermolecular potential and for some time it 
was not clear whether these latter permutation 
inversions were feasible, that is, whether the um- 
brella inversion was quenched by the argon. Micro- 
wave  experiment^'^^ and computationsg have shown 
an umbrella splitting almost as large as in the free 
monomer, however, and hence the argon-ammonia 
dimer also has a group isomorphic to  D3h. 

As a next example we will discuss briefly the 
ammonia dimer. Some early spectroscopic worklg3 
on this dimer did not show umbrella inversion 
splittings, and so it was assumed that the inter- 
molecular potential quenches the inversions of both 
umbrellas. In this case of two identical monomers 
there are many permutations (the complete per- 
mutation inversion group is of the order 2 x 6 !  = 
2880), and some of the intermonomer permutations 
may be feasible. And indeed, an analysis by Nelson 
and KlempereF2 in the footsteps of earlier 
by Dyke on (HzO)~, revealed that a few intermolecu- 
lar permutation inversions give rise to  observable 
tunneling splittings. They found that the feasible 
operations constitute a group of order 36, which they 
refer to as G36, following Bunker.lo8 This group is a 
semidirect product,log designated by 0, of two outer 
products. Numbering the protons on monomer A by 
1, 2, and 3 and those on B by 4, 5, and 6, and 
designating the respective nitrogens by 7 and 8, we 
can write the group as follows: 

G,, = (G 63 e) @ (C2 63 C,) ((222) 

where 
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Recently the inversions of both monomer umbrellas 
have been observed'' and hence (23) and (56) must 
now be considered to be feasible in the dimer. Adding 
these elements to  the molecular symmetry group 
gives a group of order 144, designated by G144. This 
group has the following structure 
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E* 7 = 7 Rz(n) ((31) 

where S$ contains all six permutations of monomer 
X, (X = A, B),  CZ is defined in eq C24, and Ci = 
{E,  E*}. The effect of the generators of this group 
on the spherical polar components R, a, ,8 of 
MAMB and the Euler angles, defined as in eq C21, of 
both monomers is given in Table 16. The umbrella 
coordinates @A and @B are defined as in section III.C, 
cf.  also eq C20. 

As a final example we will discuss the case of 
argon-benzene, where we choose to describe the 
motion of argon in a frame fured to benzene, as 
introduced in Appendix A.3. We number the carbon 
atoms counterclockwise from 1 to  6 and choose r  
a n d c  to be Eckart vectors.254 Thus, we have the 
frame 

(C26c) 

- 
The notation < is shorthand for MC, , where M is 
the mass center of the benzene. When the molecule 
is a regular hexagon, the vec to rc  lies on the line 
from atom 4 to  1 and is perpendicular to it. 
When the molecule does not have 6-fold symmetry, 
the vectors are not necessarily orthogonal, and an 
orthogonalization must be performed in order to  be 
able to  define Euler angles. A symmetric (Lowdin) 
orthogonalization leads to  an Eckart frame.254 

The permutation inversion group of the free ben- 
zene is isomorphic to its point group D6h and is 
referred to as PI(D6h). This isomorphism arises by 
virtue of the fact that benzene is nearly rigid, i.e. it 
does not show observable torsional or inversional 
splittings. All feasible permutation inversions are of 
the first kind. The group has the following structure: 

PI(C,,) = C, {E,(35)(26)*} ((327) 

= PI(C,") 8 {E$*} (C28) 

where c6 is the cyclic group generated by (1 2 3 4 5 6). 
By acting with the generators on the basis (C26), we 
easily derive 

(1 2 3 4 5 6) = RAE) 

Let us now add argon with position vector =?A 
to  the system. Since both M and A are invariant 
under pure permutations, M A  is also. So we find 

(1 2 3 4 5 6) MA = (1 2 3 4 5 6) ? A = 7 A' = 

7 R$)A' = MA = F A  (C32) 

By this, and similar reasoning for the other genera- 
tors, while remembering that = changes sign 
under E*, we find for the argon coordinate vector 

(1 2 3 4 5 6) A - Rd-$A (C33) 

(C34) 

(C35) 

(3 5)(2 6)*A --+ -RX(n)A 

E *A - - Itz( n)A 

In order to  study the feasibility of the operations, we 
designate the spherical polar coordinates of A by R, 
8, and 6. Obviously the length R is invariant and 
the angles transform as 

r e - e  
(1 2 3 4 5 6): Jt 

The interaction'between the benzeie and the argon 
is not strongly 6 dependent. But it is very 8 depend- 
ent, since the plane 8 = 90" is the plane of the 
benzene and the barrier for the tunneling of argon 
through this plane is high. We can expect, therefore, 
that E* will not be feasible, whereas (1 2 3 4 5 6) and 
(3 5)(2 6)" will very likely be feasible. Indeed, this 
has been found, both in the ~ p e c t r a l ~ ~ J ' ~  and in 
 calculation^.^^ Consequently, the appropriate per- 
mutation inversion group for the system argon- 
benzene is PI(c6"). We wish to emphasize that this 
symmetry does not imply that argon is restricted to 
move on the 6-fold axis of the rigid benzene; the atom 
moves above (or under) the plane of the molecule, 
hindered only by the weak van der Waals potential. 
The wave functions of argon below and above the 
plane are degenerate to  all practical purposes. 
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